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Abstract— The diverse and vibrant ecosystem of interactive visualizations on the web presents an opportunity for researchers and
practitioners to observe and analyze how everyday people interact with data visualizations. However, existing metrics of visualization
interaction behavior used in research do not fully reveal the breadth of peoples’ open-ended explorations with visualizations. One
possible way to address this challenge is to determine high-level goals for visualization interaction metrics, and infer corresponding
features from user interaction data that characterize different aspects of peoples’ explorations of visualizations. In this paper, we
identify needs for visualization behavior measurement, and develop corresponding candidate features that can be inferred from users’
interaction data. We then propose metrics that capture novel aspects of peoples’ open-ended explorations, including exploration
uniqueness and exploration pacing. We evaluate these metrics along with four other metrics recently proposed in visualization
literature by applying them to interaction data from prior visualization studies. The results of these evaluations suggest that these
new metrics 1) reveal new characteristics of peoples’ use of visualizations, 2) can be used to evaluate statistical differences between
visualization designs, and 3) are statistically independent of prior metrics used in visualization research. We discuss implications
of these results for future studies, including the potential for applying these metrics in visualization interaction analysis, as well as
emerging challenges in developing and selecting metrics depicting visualization explorations.

Index Terms—Interaction, Visualization, Quantitative Evaluation.

1 INTRODUCTION

As interactive visualizations migrate from standalone applications to
the web, visualization users have expanded from domain experts to
the general population. Alongside this expansion of both visualization
creators and consumers comes an expansion in the goals of both -
from casual exploration to focused analysis. But do the metrics we
use to assess visualizations capture this diversity in objectives? In
this paper, we explore how the rapid development of expressive and
interactive forms on the web has demanded an extension of the metric
toolbox in which we equip content creators, and how we can better
align assessment with the goals of the designers.

Consider an example where someone explores an interactive scat-
terplot visualization showing a company’s profit and income. Each
point represents a company, and upon mousing over a point the user
will uncover the company’s income over several years, the employ-
ees’ age distribution, etc. A person’s goals can be diverse here, rang-
ing from specific (gathering information on a possible stock purchase)
to broad (getting to know more companies). Two likely metrics to
describe their behavior include time spent on exploration and points
interacted with. These metrics could be used to answer basic ques-
tions about how an audience uses a published visualization, for exam-
ple “how many points did the average person interact with?” or “how
long did the average person explore the visualization?”. Yet despite
their diversity in goals, it’s possible that users interact with a simi-
lar number of points and engage with the visualization for a similar
amount of time. While simple metrics might not reveal differences
between users, in reality, their behavior may not align with what the
creator of the visualization had in mind for their audience.

Although research has made strides in designing and evaluating in-
teraction in visualization, we lack low-barrier, expressive metrics that
capture the breadth of user interaction [23, 5, 6, 16]. Various analysis
strategies have been used to answer these questions, including statis-
tical and visual approaches (e.g., [3, 5, 30]). However, these existing
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approaches have limitations with characterizing user explorations pre-
cisely. Many of the metrics used to summarize activity tend to over-
aggregate behavior, failing to identify differences between users, or
by failing to capture detailed information such as how long has been
spent on which visual elements. On the other hand, the visual ap-
proaches usually keep the details of users’ interaction logs, but visual
inspections can hardly lead to reliable inferences.

One possible way to bridge this gap is to develop metrics, i.e., statis-
tical measures, which take into account more information in peoples’
interaction logs, and to better reveal facets of peoples’ explorations.
Related efforts can be found in the field of HCI. Chi et al. [9] quan-
tified the saliency of a user’s visit to a website when modeling users’
information needs and actions on the web. Heer et al. [20] further
used this measure to cluster web users. These efforts influence our
work of visualization interaction analysis, in that a user’s open-ended
exploration of a visualization containing visual elements can be con-
sidered analogous to the exploration of a website. However, it is im-
practical to directly adapt these methods developed to analyze website
explorations, due to the differences between the website clickstream
analysis and visualization interaction analysis, such as different scales
(i.e., usually millions of users versus tens to thousands of users) and
different complexity of interaction types.

The aims of this paper are three-fold:

1. Derive a requirements space to categorize existing and new met-
rics that quantify facets of users’ exploration of data visualization
and in doing so identify emerging analysis needs.

2. Derive two new metrics centered around user exploration diver-
sity and pacing that provide new perspectives into users’ open-
ended exploration.

3. Evaluate both these new metrics and metrics recently proposed
in visualization literature across hundreds of interaction traces
from previously published visualization experiments 1.

We further discuss how these metrics can help both statistical and
visual approaches to analyze interaction logs, such as 1) quantifying
the impact of visualization designs on user behavior; 2) organizing the
visual representation of interaction logs; and 3) serving as features to
machine learning models.

1The experiment data and analysis scripts are available on the Open Science
Framework: https://osf.io/dx43q

https://osf.io/dx43q


2 BACKGROUND

2.1 Characterizing Website Exploration
One closely related thread of research is clickstream analysis and vi-
sualization for websites or applications [22, 24, 25, 39, 46], under a
broader research topic of event sequence analysis [15, 28, 43, 27, 45].
Clickstream research includes the data processing, analysis and vi-
sualization methods to analyze users’ website visit logs. For exam-
ple, Liu et al. [25] developed algorithms to extract sequence patterns
from clickstreams. Zhao et al. [46] created a visualization called Ma-
trixWave to compare two clickstream datasets, and found it to scale
better than commonly used Sankey diagrams.

2.2 Characterizing Visualization Explorations
Characterizing user behavior through interaction logs has been used
for various purposes, such as learning user characteristics [7, 30], un-
derstanding system usage [32] and the reasoning process [12], and
evaluating visualization design [5, 16, 13].

2.2.1 Visual Approaches
Visual approaches refer to strategies of showing users’ interaction logs
with visualizations [8, 12, 43, 37]. The interaction logs can be shown
in an aggregated way in order to reveal the behavioral differences of
user groups in experiment analyses. For example, Ottley et al. [30]
used aggregated maps to show different exploration patterns of tree
visualizations. Users’ interaction logs can also be shown individu-
ally. Blascheck et al. [3] introduced a visual analytic approach to study
users’ interactions with visual analytics. These visual approaches have
the advantage of preserving the details of the interaction logs. How-
ever, visual examination alone cannot provide robust analyses of user
behavior, as they are often better paired statistical approaches. [27]

2.2.2 Statistical Approaches
Commonly used metrics to depict a user’s exploration include total
exploration time spent by a user, and number of raw interactions per-
formed by a user during exploration, such as hovering and clicking.
Boy et al. [5] evaluated the effectiveness of storytelling by comparing
users’ exploration time and raw interaction counts (hovers and clicks)
between the experimental and control groups. Liu et al. [23] measured
the effects of latency on users’ exploration behavior of visual analyt-
ics by using raw interaction counts (drag, brushing and linking, etc).
There are many other works using the basic metrics to characterize
users’ interaction with visualizations [7, 16, 21].

However, these raw counts have limitations with delivering seman-
tic meanings of user explorations. Interaction coding was thus used to
describe interaction behavior. Boy et al. [6] and Guo et al. [16] coded
the raw interactions into semantic interactions, such as selecting, fil-
tering and inspecting, according to Yi et al.’s [44] visualization inter-
action framework. They counted the coded interactions afterwards.

Some work went beyond counting individual interactions (includ-
ing raw and semantic ones), in order to reveal more characteristics of
user explorations. Guo et al. [16] further extracted the sub-sequences
containing specific individual interactions, and then counted the sub-
sequences for each user. Wall et al. [40] proposed six metrics to mea-
sure cognitive bias, including data coverage, data distribution and at-
tribute coverage/distribution, etc.

In this work we create a feature space to categorize the existing
metrics, and develop new metrics by filling the gaps in the framework,
by fully utilizing the information in interaction sequences, in order to
reveal more characteristics of users’ visualization explorations.

3 A REQUIREMENTS SPACE FOR METRIC DEVELOPMENT

The aim of this work is to explore and evaluate metrics that charac-
terize the diversity of peoples’ explorations with interactive visualiza-
tions on the web. We therefore situate our metric development activ-
ities by deriving a set of requirements (top-down) and examining the
possible common data sources (bottom-up) from which new metrics
can be derived, which translate into two questions:

1. What do we need to measure for behavior analysis?

2. What can we measure given users’ interaction logs?
These questions drive two dimensions in this requirements space: 1)

identifying unfilled measuring needs for visualization behavior analy-
sis, and 2) deriving low-level measurable features from visualization
interaction logs (Section 3.1 and 3.2).

We form the structure of this requirements space based on
O’Connell et al.’s [29] framework for deriving metrics measuring hu-
man interaction with interactive visualizations. In their framework,
high-level needs include human-interaction heuristics, i.e., measures
that assess how well visualizations empower analysis, collaboration,
ease of use, etc. O’Connell et al. then derive corresponding metrics
for each of the heuristics by utilizing features from users’ interaction
data such as number of interactions performed by a user.

One aim of this work is to move beyond system-specific visualiza-
tion interaction metrics towards metrics that can be applied across a
range of visualizations and for a range of creator goals, whether they
be visualization practitioners or researchers. Our requirements space
therefore expands and generalizes O’Connell et al.’s metric frame-
work in two ways. First, centered on needs of visualization creators,
we identify desirable avenues for visualization interaction metric de-
velopment. Second, by examining commonly available interaction
data in web-based visualizations we derive novel features which are
intended to enable new means for comparison and reasoning about
how audiences interact with visualizations.

3.1 Visualization Interaction Analysis: Identifying Needs
What are unfilled needs in visualization interaction analysis?

Researchers and practitioners often develop metrics to capture vari-
ous dimensions of user experience. While there is currently no widely
used metrics framework targeting visualization activity, we might con-
sider frameworks developed in human-computer interaction as a start-
ing point. Consider the HEART metrics framework for web applica-
tions proposed by Rodden et al. [34]. In the context of evaluating web
applications, Rodden et al. define five categories: happiness, engage-
ment, adoption, retention, and task success. This framework, while
not originally intended for visualization, can be used to some extent
to categorize existing efforts in developing metrics for interactive vi-
sualizations. For example, some existing metrics aim to reveal users’
task success. Time spent on exploration has been used as an indicator
of how efficiently a task is performed by the user [31, 41]. Targeting
bias, Wall et al.’s metrics aim to capture the quality of exploration in
visual analytics contexts. Other metrics target proxies of engagement
with visualizations. For example, interaction coverage metrics have
been explored in several recent works, typically targeting numbers of
specific types of interaction events (e.g., [23, 5, 13, 38]).

The complexity of interactive visualization makes it difficult to de-
velop metrics that fulfill all dimensions of measurement needs, espe-
cially by only adapting metrics from web applications. Challenges sur-
rounding metrics development are especially salient given the question
of measuring user “engagement” in visualizations, which indicates
users’ willingness to invest effort to explore further and gain more
information from the visualization [26, 5, 17]. For example, longer
exploration may indicate engagement, but may also be reflective of
confusion and difficulties faced by a user learning a new interaction
scheme. Similarly, an increase in interaction counts could either reflect
users’ interest or possibly their random clicks to orient themselves in
a new environment. Given these ambiguities, one aim of this paper
is to explore new formulations and perspectives on metrics that may
serve as useful proxies for capturing part of the user experiences of an
interactive visualization.

In this paper, we seek new metrics to reveal more aspects of user
engagement with visualizations. The next section (3.2) deals with how
to enumerate these metrics given users’ interaction data.

3.2 Deriving Features from Visualization Interaction Data
What can we measure from peoples’ visualization interaction data?

Working from the bottom-up, we observe that multiple candidate
low-level features can be extracted from peoples’ visualization inter-
action data. For example, Wall et al. [40] listed two measurable fea-



Notation Description
E = {e1, ...,eN} The set of N interactive ele-

ments in the visualization.

U = {u1, ...,uM} The set of M users who explore
the visualization.

|E(u)| The number of visualization el-
ement a user u interacts with.

A = {click,hover...} The set of available action types
of interaction.

t The moment when an event
occurs.

I = (t,a,Ei,d) An interaction event, including
the moment t when it occurs,
the type of action a ∈ A, the set
of interacted visualization ele-
ments Ei ⊆ E, and the duration
of the interaction d.

Ex(u) = (tstart , I1, ..., Ik, tend) The interaction log of a user u
exploring the visualization, in-
cluding a time-series ordered
sequence of events, the moment
when the exploration starts
tstart , followed by k ordered in-
teraction events I1, ..., Ik and the
end moment tend .

C(um,en) The count of interactions with
the visualization element en ∈E
by the user um.

T (um,en) Time spent by user um interact-
ing with the vis object en ∈ E.

Table 1: Notations used to describe user interactions with visualiza-
tions, and to describe the metrics in this paper.

tures, types of interaction (e.g. clicking and hovering) and objects of
interaction (i.e., the visual elements interacted with), that can be ex-
tracted from users’ interaction data and used in metric development.
Similarly, Blascheck et al. [4] point out that the time spent for inspect-
ing particular data items is a widely available and useful feature to be
considered in evaluating user behavior.

Based on the existing literature of visualization interaction analy-
sis [40, 4], visualization interaction frameworks [44], and the related
topic of website clickstream analysis [24, 18], we list several low-level
interaction features that can commonly be obtained from a user’s ex-
ploration session of visualizations encountered on the web (see Table
1 for precise descriptions using mathematical notations):
• type: What type of interaction is it (e.g. selection, hovering, or

the types from existing frameworks such as Yi et al. [44])?
• element(s): Which element(s) in the visualization are users in-

teracting with?
• duration: How long does the user interact with the visualization

element(s)?
• order: In what order do the interactions take place?
• moment: At what moment in exploration does each interaction

take place?
• exploration time: How long does the user spend exploring

facets of the visualization?
We list several metrics characterizing users’ visualization explo-

rations and identify the underused features. There are several basic
metrics that are commonly used by researchers and practitioners. We
simplify the description of the metrics by assuming that there is only
one type of interaction in the visualization:
• number-of-actions [5, 23, 16]: equals to k, the number of certain

type of interactions performed by the user during exploration.
• number-of-visited-elements [13]: equals to |E(u)|, the number

of unique visualization elements visited by the user. A visit is
defined as a meaningful (i.e. non-accidental) interaction with an
element, which lasts for at least a short amount of time (e.g.,
500ms) [5, 13, 14].

• exploration-time [5, 23, 13, 14]: equals to tend − tstart , the time
spent by the user on the exploration.

A recent study in the visual analytics area from Wall et al. [40]
propose metrics to measure bias in visualization exploration, by using
multiple features from users’ interaction data.

bias-data-point-coverage measures bias based on the user’s cover-
age of the data points in the visualization. Since one data point is often
mapped to one element in the visualization, in this paper, a data point
is considered equivalent to a visual element.

bDC = 1−min(
|E(u)|

κ̂(E(u))
,1)

where |E(u)| denotes the number of unique visualization elements in-
teracted by the user, and κ̂(E(u)) denotes the expected value of the
number of unique elements visited in k interactions.

κ̂(E(u)) =
Nk− (N−1)k

Nk−1

Another metric Wall et al. propose is bias-data-point-distribution,
measuring bias toward repeated interactions with individual data
points or subsets of the data.

bDD = 1− p

where p is the p-value obtained from the χ2 distribution with N - 1
degrees of freedom

χ
2 =

N

∑
n=1

(C(u,en)−Ĉ(u,en))
2

Ĉ(u,en)

where Ĉ(u,en) = [k/N].
Among the existing metrics, we observe that the basic metrics (e.g.,

number-of-visited-elements) reveal the end results of the exploration
process, meaning that the details in the process (e.g., elements and
duration of each interactions) are not preserved in the metrics. Wall
et al.’s bias metrics go beyond traditional methods by distinguishing
the element of each interaction in the exploration process. However,
we still observe that some other features revealing details are under-
used by existing metrics, e.g., duration and moment of interaction.
Examining the existing metrics such as visits and exploration time in
light of these recent studies raise new questions about user exploration
in visualizations. For example, instead of how many elements are vis-
ited in the visualization, what about the diversity of elements visited?
And instead of how much time is spent in exploration, what about the
pacing of peoples’ exploration inside visualizations?

Given both the unfilled needs of measurement and underused fea-
tures in users’ interaction data, we propose two additional metrics that
take into amount more features, and thus offer new perspectives user
engagement, i.e., the diversity and pacing of peoples’ open-ended ex-
plorations with interactive visualizations.

4 PROPOSED METRICS

4.1 Exploration Uniqueness
The exploration-uniqueness (EU) metric aims to capture the diverse
engagement of peoples’ open-ended explorations, i.e., to quantify how
unique a user’s exploration pattern is compared to patterns from oth-
ers. The EU metric is defined as aggregated visit duration over visual
elements, weighted by the uniqueness in comparison to the crowd. A
low EU value suggests that a user’s time distributed visiting the vi-
sual elements align with common patterns of exploration in the visu-
alization. A high EU value suggests that a user’s exploration strategy
differentiates itself from most other users.

Measurable features: There are many ways to define a unique ex-
ploration pattern, e.g., visiting a set of unique elements, or visiting
elements in an unique order. This metric characterizes the uniqueness
of a user’s visited element sets, instead of visit orders. In open-ended



explorations, visit orders may carry too much variance, obscuring the
trends of unique explorations. We thus compute uniqueness based on
the distribution of time spent visiting the data items in the visualiza-
tion. The features from users’ interaction logs (Section 3.2) taken into
account are the elements and duration of interaction, i.e., the order of
interaction and exploration time are discarded.

Modeling approach: As we develop the metric, we model the in-
teraction behavior of a group of users as a matrix (Equation (2)), where
each row represents a user, and each column represents an element in
the visualization. An alternative approach is to model each user’s inter-
action sequence as a Markov chain, which is used in Wall et al.’s bias
metrics. Each interaction with a visual element is a state in a state
space. A user performing the {element, interaction} combination has
transitioned to the associated state in the Markov chain. We adopt
matrix to model interactions for the EUmetric mainly for two reasons.
First, a user’s behavior is represented as a vector, instead of a sequence.
This representation aligns with the selection of features, i.e., focus on
the data distribution, rather than the visit order. Second, matrix enables
comparisons across users, i.e., each user’s behavior can be compared
to the crowd.

4.1.1 Adapting the Concept of Term Frequency-Inverse Docu-
ment Frequency (TF-IDF)

In order to depict the uniqueness of a users’ exploration process, we
need to know how unique each of her visit is, compared to other users’
visits. From the field of information retrieval, we find one adaptable
concept, Term Frequency-Inverse Document Frequency (TF-IDF), de-
scribing how unique a word is in a document collection. The unique-
ness of the appearance of a word in a document is the product of TF
and IDF. Term frequency (TF) is the frequency of the word in a par-
ticular document. Inverse document frequency (IDF) is the inverse
proportion of documents the word appears in. IDF acts as a weight
to TF, rewarding the words appear in less documents, and penalizing
those appear in more documents. For example, a and the tend to have
lower IDF than house.

Given a document collection D, a word w, and an individual docu-
ment d ∈D, we calculate a TF-IDF value for each word in a document:

T FIDF(w,d) = T F× IDF =
f (w,d)
|d|

× log(
|D|

f (w,D)
) (1)

where f (w,d), equals the number of times w appears in d, |d| is the
number of words in d, |D| is the size of the corpus, and f (w,D), equals
the number of documents in which w appears in D [36].

In several research initiatives, TF-IDF has been extended from char-
acterizing words to modeling user behavior. For example, In the field
of HCI, TF-IDF has been used to describe the uniqueness of peoples’
visits to a website [9, 19, 20], and peoples’ geospatial movement [42].
Herein we adapt TF-IDF to calculate the uniqueness of a user’s visit to
an element in a visualization. Specifically, we map a user’s interaction
log to a document, each visit of a visual element to a word in the doc-
ument, and a collection of exploration sessions of multiple users to a
corpus. A visual element visited by more users has a higher IDF value
than an element visited by fewer users.

4.1.2 Metric Calculation Steps

The exploration-uniqueness metric is computed in three steps.

Step 1: Form a matrix VN×M representing the distribution of
visits from the M users to the N visual elements in a collection of
interaction logs.

VM×N =

T (u1,e1) . . . T (u1,eN)
...

. . .
...

T (uM ,e1) . . . T (uM ,eN)

 (2)

where each row represents a user um, each column represents a visual
element en, and each element T (um,en) is the aggregated time (mea-
sured in ms) the user um spent visiting the en.

Step 2: For each element in the matrix VM×N , calculate a TFIDF
value. We adapt Equation (1) to calculate the TF-IDF values, which
represent how unique the visit is from each user um to each visualiza-
tion element en.

T FIDF(um,en) =
T (um,en)

∑
N
i=1 T (um,ei)

× log(
M

f (en,Ex)
) (3)

where T (um,en) is the aggregated time the user um spent visiting the
element en, M is the total number of the users, and f (en,Ex) denotes
the number of users in the exploration collection Ex who spent time
on the visual element em.

To calculate the Term Frequency of TF-IDF, we choose to use a
user’s aggregated time spent on a visual element T (um,en), divided
by the total time the user spent visiting all the visual elements. There
are two alternative options, 1) to use the count of visits from a user to
an element C(um,en), divided by the total number of visits from the
user to all the elements, and 2) to use the binary value {1,0} to mark a
user’s visit to an element (1 if visited, 0 if not visited), and then divide
it by the total number of elements visited by the user. We choose the
time option over the other two to minimize noise, i.e., during open-
ended explorations, a user might accidentally interact with an element,
and aggregating the time spent by the user on the element can better
indicate the user’s intentional visit to the element.

Step 3: Aggregate the uniqueness scores Uniq for each user um.

Uniq(um) =
N

∑
n=1

T FIDF(um,en) (4)

where T FIDF(um,en) is the TF-IDF value calculated for each visit
from a user um to a visual element en, using Equation (3).

By aggregating the TF-IDF values of the visits from one user to all
the visual elements, we get a metric depicting the overall uniqueness
of the user’s exploration. This aggregation process can omit the varia-
tion of the TF-IDF distribution, i.e., a user having only one visit with
extremely high TF-IDF value may have the same uniqueness metric
value as another user having many visits with low TF-IDF values. But
the aggregation has at least two advantages. First, it enables the com-
parison among any users in a group. Before aggregation, each user’s
interaction behavior is modeled as a vector. A vector supports pair-
wise comparison between two users, which can be very useful under
some circumstances (see Section 6.1). However, it does not support
comparison among more than two users. The aggregated metric, in-
stead, supports comparison between subgroups containing any num-
ber of users, which is useful for evaluating alternative visualization
designs through user interaction. Second, a sum-based aggregation
preserves all the unique visits during a user’s exploration, i.e., if a user
has visited any rarely-visited element, it will be preserved in the final
metric. Considering an alternative aggregation approach – averaging
the uniqueness of a user’s visits by the visited elements, if a user has
visited lots of frequently-visited elements and one rarely-visited ele-
ment, the latter will be averaged out after aggregation.

4.2 Exploration Pacing
The pacing metric aims to differentiate temporal strategies by users.
Given that the temporal features, e.g., duration and moment of inter-
actions, are underused by existing metrics, we seek metrics that can
utilize them and reveal peoples’ diverse exploration patterns. The tem-
poral information from a user’s exploration process can be viewed as
time-series signal, with the moments “visiting any element” marked as
non-zero values, and the other moments marked as zeros.

In fields related to signal processing, e.g., image and audio pro-
cessing, people extract features not only from the temporal aspect, but
also the frequency aspect of the signal, e.g., the high-frequency parts
of an audio piece. Similarly, the frequency-related information may
also carry users’ exploration characteristics. While users may visit the
same set of visualization elements and spend same amount of time on
exploration, the duration and frequency of those visits may be differ-
ent, and thus may reflect different exploration strategies. By charac-
terizing these differences with exploration-pacing, we may begin to
quantify another aspect of user engagement with a visualization.
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Fig. 1: A user’s exploration interactions can be transformed into a
time-series signal with {0,1} representing her visiting status. (Time
used to visit an element is marked as gray.) The signal sequence can
further be transformed to a 2D wavelet power spectrum through con-
tinuous wavelet transform.

The exploration-pacing (EP) derived in this section is defined as the
density of a user’s high-frequency visits to the visual elements during
exploration. A higher EP value suggests a user that rapidly moves
from item to item. A lower value might reflect a user that explore
individual elements for more time.

Measurable features: We compute the pacing metric based on the
distribution of a users’ interaction frequency. The features related to
time from users’ interaction logs (Section 3.2) to calculate the metric,
i.e., the moments and duration of interaction, and exploration time.
We discard the other less relevant features, e.g., elements.

Transform approach: One essential step to develop the metric is
to select a function to transform a user’s visit sequence over time to
a visit-frequency sequence. One key intuition here is that merely av-
eraging or binning time durations of a user’s interaction with visual
elements is insufficient for developing a single metric, as in-depth in-
teractions will be dominated by multiple shorter-duration interactions.
Instead, we observe that common mathematical techniques, e.g., the
wavelet transform, can readily transform duration data from the time
domain to the frequency domain.

4.2.1 Adapting the Concept of Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) is often used for extracting
the frequency information from a time-series signal by conducting a
convolution of the signal with a wavelet function [1]. The CWT of a
function x(t) at a scale s (s > 0, s∈R+∗) and translational value τ ∈R
is expressed by Equation (5):

Wavew(s,τ) =
1√
s

∫
∞

−∞

x(t)ψ(
t− τ

s
)dt (5)

where ψ(t) is the mother wavelet, a continuous function in both the
time domain and the frequency domain, and the over-line represents
operation of complex conjugate.

The power of CWT has an interpretation as time-frequency wavelet
energy density called the wavelet power spectrum (Equation 6). This
coefficient can be used to indicate the energy distribution of every mo-
ment in a user’s exploration, e.g., a moment with higher power values
on high-frequency ranges indicate rapid visits to visual elements.

Power(s,τ) =
1
s
|Wavew(s,τ)|2 (6)

Compared to the traditional short-time Fourier transform (STFT),
CWT can also construct a time-frequency representation of a signal
that offers reliable time and frequency localization. This property
makes it better at extracting frequency features from the non-periodic
time-series user interaction sequences. Thus we adapt CWT to au-
tomatically detect the frequency distribution of a user’s visualization
exploration over time.

4.2.2 Metric Calculation Steps

The exploration-pacing metric is computed in three steps.

Step 1: For each user, form a time-series sequence S(t), repre-
senting the user’s visiting status over time, from a user’s explo-
ration interaction sequence Ex(u). S(t) contains a sequence of val-
ues of {0,1} over time, sampled from a user’s exploration process.
If at moment t, the user is visiting an element, then it is marked as
1; otherwise if the user is not visiting any element, it is marked as
0. We sample the data every 0.1 second. If a user visited an element
for one second at the beginning of her exploration, then the sequence
S = (1,1,1,1,1,1,1,1,1,1,0,0,0, ...).

Step 2: Apply continuous wavelet transform to the sequence S(t)
to obtain a 2D time-frequency wavelet power spectrum. We use the
R package “WaveletComp” [35], which computes CWT and obtain a
wavelet power spectrum (Figure 1) according to Equation (5) and (6).
The Morlet wavelet is used as the mother wavelet for the convolution.

Step 3: Obtain the metric value PacingHF by computing the
average power over time and a high-frequency range [ fmin, fmax].

PacingHF =
1

( fmax− fmin)(tend − tstart)

fmax

∑
f= fmin

tend

∑
t=tstart

Power(t, f ) (7)

where tstart and tend denote the start and end moments of a user’s ex-
ploration session.

We use 1/32 Hz and 1/8 Hz as the minimum and maximum bounds
for the high-frequency range to compute the metric. Given that the
sampling rate we use is once per 0.1 second, the high-frequency range
corresponds to a period range of 0.8 and 3.2 seconds. This range aims
to generally align with high-frequency (i.e., rapid) visit behavior, and
to mitigate possible accidental interactions, but can vary depending
on visualization design. Precise modeling and parameters given vi-
sualization type and user behavior may be a valuable route for future
work. For example, the range parameter can be changed to extract
users’ power density for other frequencies (e.g., low frequency).

5 METRIC EVALUATION

5.1 Interaction Data from Two Studies
We evaluate the two proposed metrics by applying them, together with
other four metrics used in visualization literature, to interaction data
collected from two previous studies from Feng et al. [14, 13]. Search-
inVis [14] studied the effects of adding text-based search functionality
to interactive visualizations on the web. Search enables a user to high-
light elements in the visualization by typing keywords in a search box.
HindSight [13] studied the effects of directly encoding people’s per-
sonal interaction history in visualizations. During a user’s exploration,
visual elements the user interacts with are visually augmented to ap-
pear distinct from unexplored elements. Figure 2 shows visualizations
from these studies whose data was adapted for the present work.

Participants and Conditions: Both studies include multiple ex-
periments, one for each study-visualization pair, e.g., SearchinVis-
255Charts. All experiments had a between-subjects design, conducted
on Amazon Mechanical Turk. Every participant was randomly as-
signed to interact with either the original or augmented version of a
visualization. Table 2 shows the participant numbers of the control
and experimental groups in each experiment.

Task and Procedure: Each participant was asked to analyze the vi-
sualization for as long as they liked before answering questions. The
authors used an open-ended exploration task in order to simulate peo-
ple’s real-world explorations of web visualizations. Each participant
went through several phases, including introduction, exploration, and
insight/strategy. In the introduction phase, the participant was given
instructions to interact with the visualization in any way they saw fit.
Afterwards, the participant entered the exploration phase, where they
could interact with the visualization without time limit. When the par-
ticipant finished exploring, they entered the insight/strategy phase,
where they answer questions about their findings aimed at highlight-
ing possible differences in the control and experiment conditions.

Interaction Data: During the exploration phase, each partici-
pant’s interactions with visual elements were recorded as Ex(u) =



(a) SearchinVis - 255Charts (b) SearchinVis - Boardrooms (d) HindSight - Metafilter(c) HindSight - 255Charts

Original Augmented AugmentedOriginal Original Original AugmentedAugmented
A search box is added to the original visualization,
enabling searching by vis element names..

The elements interacted by the user appear
differently than the rest.

Fig. 2: Four experiment datasets from two previous studies [13, 14] were used for the metric evaluation: SearchinVis-255Charts, SearchinVis-
Boardrooms, HindSight-255Charts and HindSifght-Metafilter. Each dataset includes the interaction data of two groups of participants. Each
group interacted with either the original or the augmented visualization.

Studies SearchinVis HindSight
Experiments Colleges 255Charts 255Charts Metafilter

control 67 57 57 44
experimental 72 72 59 48

Total 139 129 116 92

Table 2: Number of participants in 4 experiments in the previous stud-
ies [13, 14]. The control user group in each experiment includes the
users randomly assigned to explore original visualizations. The exper-
imental group includes those exploring augmented visualizations.

(tstart , I1, ..., Ik, tend), where tstart and tend are the start and end time
of the exploration phase, and Ii(0 ≤ i ≤ k) denotes every interaction
(Table 1). Each interaction was recorded as I = (t,a,Ei,d), where t is
the start moment of the interaction, a is the interaction type (hovering),
Ei is the set of interacted elements (there is one and only one element
affected by each interaction), and d is the duration of the interaction.

Specifically, we select from these studies visualizations that
were adapted from published visualizations on the web, includ-
ing 255Charts and Boardrooms from the SearchinVis study, and
255Charts and Meta f ilter from HindSight. We exclude the remain-
ing visualizations in these studies in the present analysis, such as a
bubble chart of exoplanet data (i.e., condition 5 in [14]), because they
were designed to test specific hypotheses in the prior studies, such as
the effects of dataset familiarity and search behavior.

5.2 Applying Interaction Metrics: Case Studies

Can the proposed metrics reveal new characteristics of people’s inter-
action with visualizations?

To evaluate the extent to which the proposed metric exploration-
uniqueness(EU) shows different exploration patterns, we examine sev-
eral individual exploration sessions in which users visited the same
number of visual elements (NVE), but varied on the EU values. Then
we visually examine whether an exploration with a higher metric value
includes more elements rarely-visited by others.

In order to distinguish frequently- and rarely-visited elements, we
calculate the percentage of visits for each element, and plot it as a
baseline map (Figure 3), where each circle represents a visual ele-
ment, and its opacity mapped to the percentage of users who vis-
ited it. From the baseline maps of both SearchinVis-255Charts and
HindSight-255Charts, visual inspection suggests that the elements at
the periphery of the visualization are frequently visited, while the ele-
ments in the middle are rarely visited.

As shown in Figure 3, user A, B and C from SearchinVis-
255Charts visited the same number of elements (25) during their ex-
plorations. However, these explorations vary at EU, i.e., A’s is the
lower (0.9), B’s is the medium (1.4), and C’s is the higher (2.0). For
each of them, we plot all visited elements on top of the baseline map,
where each circle represents a visit, with its size corresponding to how
long the user spent visiting this element. Visually comparing the visit
maps from the user A, B and C, we find that the elements visited by A
(lower EU) are mostly at the periphery of the visualization, which are
frequently visited by other users, according to the baseline map. In-

stead, user C (higher EU) visited more elements located at the lower-
middle part of the visualization, which are rarely visited by other users
in the study. The elements visited by user B (middle EU) include some
frequently-visited and some rarely-visited elements.

Similarly, user G, H and I from HindSight-255Charts visited the
same number of elements (22) with varying EU, i.e., G’s is the lower
(0.7), H’s is the medium (1.2), and I’s is the higher (1.7). By visually
comparing the visit maps from G, H and I, we see that the elements
visited by G (lower EU) are mostly at the periphery of the visualization
(i.e., frequently-visited elements). User I (higher EU) visited more el-
ements at the middle part of the visualization, which are rarely visited
by other users in the study. The elements visited by user H (middle
EU) include both frequently-visited and rarely-visited elements.

We also find that exploration-pacing (EP) can reveal differences in
the pacing of user explorations. Specifically, we examine the individ-
ual cases from SearchinVis (user D, E, F) and HindSight (user J, K,
L). Each of these users explored the visualization for similar amount
of time, but with lower, medium or higher paces. User D, for example,
appears to intersperse rapidly-paced interactions with longer interac-
tions. User F, in contrast, spends nearly all of their time performing
rapid exploration. These cases illustrate that the pacing metric can aid
in distinguishing between the temporal behavior of users, essentially
by transforming the temporal observations to the frequency space.

5.3 Metrics for Experiment Analyses
Can the metrics provide additional insight in experiment analyses?

After examining individual cases to check the validity of the pro-
posed metrics, we explore their effectiveness on one of the potential
application scenarios, i.e., to show the impact of visualization designs
on user interaction behavior. Specifically, we compare the metric val-
ues between two user groups (experimental and control) in each study
by applying the same statistical tests as in the original studies. We
also evaluate four other metrics proposed or used in visualization liter-
ature, number-of-visited-elements, exploration-time, bias-data-point-
coverage, and bias-data-point-distribution.

Following the statistical methods used in the previous studies, we
compute 95% confidence intervals using the bootstrap method, and
effect sizes using Cohen’s d - which is the difference in means of the
conditions divided by the pooled standard deviation. We also use the
non-parametric Mann-Whitney test to compare different user groups.

5.3.1 Study 1: SearchinVis
We apply the existing and proposed metrics to the interaction logs
from the two experiments of the study SearchinVis, i.e., 255Charts
Boardrooms visualization stimuli, to examine the behavioral impact
of the text-based search functionality.

255Charts: We filtered out 5 (from 129) users who did not in-
teract with any elements of the visualization. We found that, com-
pared to the users in the control group, the users from the experimen-
tal group show significantly more unique explorations (exploration-
uniqueness), and had fewer rapid-pace visits (exploration-pacing).
The experimental group had a higher exploration-uniqueness on aver-
age (M=1.7 95% CI [1.6, 1.8]) than the control group (M=1.4 95% CI
[1.3, 1.5]). The Mann-Whitney test shows that W = 1165, p = 0.0002,
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Fig. 3: We applied the proposed pacing and uniqueness to two previous studies, with results suggesting that they capture different facets of user
explorations of visualizations on the web.



and the effect size is d = 0.7 [0.3,1]. The experimental group has
a lower exploration-pacing value on average (M=0.07 95% CI [0.06,
0.07]) than the control group (M=0.11 95% CI [0.1, 0.12]). The Mann-
Whitney test shows that W = 3024, p = 2.3×10−8, and the effect size
is d =−1.2 [−1.57,−0.8].

Importantly, these metrics align with and quantify the findings and
intuitions of that study. The addition of search to 255Charts encour-
aged more diverse spatial patterns of exploration, while also nudging
users to look more in-depth at specific visual elements.

Boardrooms: We filtered out 11 (from 96) users who did not inter-
act with any visual element. We found significant differences on the
exploration-time and bias-data-point-distribution between the two
user groups. Specifically, the experimental group spent longer time
on average (M=405 95% CI [337, 480]) in seconds than the control
group (M=290 95% CI [234, 368]). The Mann-Whitney test shows
that W = 598, p = 0.007, and the effect size is d = 0.51 [0.05,0.96].
This difference has been reported in the previous study [14]. The
experimental group has a lower bias-data-point-distribution value
on average (M=0.03 95% CI [0.01, 0.09]) than the control group
(M=0.16 95% CI [0.09, 0.25]). The Mann-Whitney test shows that
W = 1109.5, p = 0.01, and the effect size is d =−0.6 [−0.95,−0.14].

In summary, by applying the existing and proposed metrics to two
experiments in the study, we found that our proposed metrics appear
to provide additional insight in experiment analyses that could have
appeared in previous published work, i.e., by quantifying the impact
of text-based search functionality on the uniqueness or “diversity” of
user explorations. At the same time, we find that in Feng et al.’s text-
based search study, the presence of the search functionality appears to
have a different impact on user behavior when added to the 255Charts
and Boardrooms visualizations.

5.3.2 Study 2: HindSight

We apply existing and proposed metrics to the interaction data from
the two experiments of the study HindSight [13], which includes
255Charts, a visualization from The New York Times, and a com-
paratively simpler Metafilter visualization stimuli. The aim here is to
examine the behavioral impact of the direct encoding of personal inter-
action history, by comparing the two user groups in each experiment.

255Charts: We filtered out one (from 116) user who did not in-
teract with any visual elements. We found significant differences on
the metric number-of-visited-elements and exploration-uniqueness
between the two user groups, while the other metrics are similar be-
tween groups. Specifically, the experimental group visited more vi-
sual elements on average (M=28 95% CI [24, 35]) than the control
group (M=21 95% CI [18, 24]). The Mann-Whitney test shows that
W = 1392.5, p = 0.11, and the effect size is d = 0.41 [0.07,0.73]. This
difference has been reported in the previous study [13]. The experi-
mental group has a higher exploration-uniqueness on average (M=1.44
95% CI [1.34, 1.54]) than the control group (M=1.26 95% CI [1.17,
1.35]). The Mann-Whitney test shows that W = 1165, p = 0.0002, and
the effect size is d = 0.48 [0.11,0.84].

Metafilter: We found significant differences on the met-
ric number-of-visited-elements, bias-data-point-coverage, bias-data-
point-distribution, exploration-uniqueness between the two user
groups, while the other metrics are similar between groups. Specifi-
cally, the experimental group has a higher number-of-visited-elements
on average (M=9.4 95% CI [7.7, 11.3]) than the control group (M=5.4
95% CI [4.3, 6.5]). (W = 686, p = 0.004,d = 0.75 [0.37,1.12]) This
difference has been reported in the previous study [13]. The exper-
imental group also has a higher exploration-uniqueness on average
(M=0.7 95% CI [0.6, 0.8]) than the control group (M=0.6 95% CI
[0.6, 0.7]). The Mann-Whitney test shows that W = 801.5, p = 0.047,
and the effect size is d = 0.44 [0.02,0.86]. In addition, we found that
the experimental group has a higher bias-data-point-coverage value
on average (M=0.9 95% CI [0.8, 0.9]) than the control group (M=0.8
95% CI [0.7, 0.8]). The Mann-Whitney test shows that W = 646.5, p=
0.001, and the effect size is d = 0.71 [0.26,1.13]. The experimental
group also has a higher bias-data-point-distribution value on average
(M=0.5 95% CI [0.4, 0.6]) than the control group (M=0.2 95% CI [0.1,

0.3]). The Mann-Whitney test shows that W = 616.5, p = 0.0006, and
the effect size is d = 0.82 [0.41,1.24].

In summary, by applying the existing and proposed metrics to two
experiments in the study HindSight, we found that our proposed met-
rics can provide additional insight in experiment analyses, i.e., uncover
the impact of direct encoding of personal interaction history on the
uniqueness of user explorations. We also find that the HindSight tech-
nique has a different impact on user behavior, specifically, users’ bias
levels, when added to the real-world and less complex visualizations.

5.4 Metric Correlation and Independence
Are the metrics correlated or independent when applied to real data?

We compute correlations between each pair of the metrics
across all experimental datasets (Figure 3), SearchinVis-255Charts,
SearchinVis-Boardrooms, HindSight-255Charts and HindSight-
Metafilter. We expect that the metrics measuring different high-level
aspects of user explorations are independent from each other.

We found strong and moderate correlations, r = [0.5,1), between
the metric bias-data-point-coverage and bias-data-point-distribution.
Specifically, they are strongly correlated in SearchinVis-255Charts
(r = 0.72, p < 0.001) and HindSight-Metafilter (r = 0.76, p < 0.001),
and moderately correlated in HindSight-255Charts (r = 0.67, p <
0.001) and SearchinVis-Boardrooms (r = 0.61, p < 0.001). This in-
dicates that for these cases, the two metrics play similar roles charac-
terizing exploration behavior.

We also found a moderate correlation, r = [0.5,0.7), between
number-of-visited-elements and exploration-time, in SearchinVis-
255Charts (r = 0.57, p < 0.001).

Both exploration-uniqueness and exploration-uniqueness have
weak correlations or less with the other metrics across all the datasets.
These results suggest that the proposed metrics carry different infor-
mation than the others when applied to user exploration data. How-
ever, we note that linear correlation is just one of many possible mea-
sures of dependence, and further analyses with larger datasets may be
necessary to make definitive claims.

6 DISCUSSION

The proposed uniqueness and pacing metrics aim to reveal new facets
of how people interact with visualizations. To examine this claim, we
applied the proposed metrics, together with metrics from prior work,
to interaction data from prior information visualization studies. The
results suggest that, first, the proposed metrics do reveal new charac-
teristics of peoples’ exploration behavior in visualizations. Second,
the proposed metrics can be used as target metrics in comparative ex-
periments, i.e., quantitative analysis comparing control and treatment
groups. Third, the proposed metrics are also generally independent of
prior metrics used in visualization research, as indicated by the corre-
lation analysis, implying that they may be a source of new information
for exploratory visualization design and research.

In the analysis of the study SearchinVis, we found that the re-
sults differ for 255Charts and Boardrooms. The metric values of
exploration-uniqueness and exploration-pacing are significantly dif-
ferent between groups in 255Charts while in Boardrooms they are
similar. One possible explanation is that the Boardroom visualization
is in a storytelling form with multiple types of interaction. Larger in-
teraction sets, then, may pose new challenges and opportunities for
measures of interaction behavior.

We also found that in the experiment HindSight-Metafilter, the ex-
perimental user group has higher values in the bias metrics on average
than the control group. By further examining the interaction logs, we
found that a higher value in the bias metric is contributed by the revis-
its to previously-visited visual elements. On the other hand, the users
in the experimental group visited more charts on average than those
in the control group, in the whole exploration process. The proposed
metrics thus lead to new questions, such as how much bias measures
should weight revisits against the breadth of peoples’ exploration?
6.1 Potential Applications of Interaction Metrics
New and newly evaluated metrics for visualization interaction analysis
may open several opportunities in visualization research.



As metrics to quantify the impact of visualization designs. One
goal of researchers and practitioners is to examine the comparative im-
pact of competing techniques on user behavior. However, users’ open-
ended explorations of visualizations can be complex, as described in
Section 3, and cannot be adequately summarized into number of ac-
tions taken or total time spent on exploration, which are the basic met-
rics commonly used in previous evaluations, e.g., [5, 13, 23]. Instead,
we have shown that from these low-level user interaction components
we can develop metrics that provide new perspectives into users’ open-
ended explorations, which may allow us to better assess the impact of
a given visualization or interaction technique on user behavior.

As proxies to infer user characteristics and reasoning processes.
Behavioral patterns of exploration can be used to infer users’ char-
acteristics (e.g., locus of control [29, 30]), reasoning processes [12],
and insight generation [16]. By providing new ways to characterize
users’ exploration behavior, we could possibly explore new avenues
of individual differences in visualization use and preference.

As attributes to visualize users’ interaction logs. One advantage
of visualization approaches for analyzing interaction data is that de-
tailed information can be logged during user interaction, as shown
in previous works that center on visualizing interaction logs e.g.,
Blascheck et al. [3, 4]. One limitation of this approach is that it re-
lies primarily on expert analysts to visually identify trends across user
interaction traces. Fortunately, recent work has begun to explore au-
tomatic approaches to assist in navigating interaction traces, such as
sequence search and extraction [3]. We contend that new metrics can
also aid in this direction of research, by serving as relatively low-
barrier features that could be encoded in interaction log visualization,
for example ordering or coloring by uniqueness, bias, or pacing [2].

As features to support machine learning algorithms. Machine
learning techniques have also been used to analyze users’ interactions
with visualizations, e.g., to classify user characteristics [30], to extract
interaction sequences [7], and to cluster users by behavioral patterns
[3]. The proposed metrics in this paper, as well as intermediate vari-
ables generated from the computation process of the metrics, may be
useful as features for these machine learning approaches. For example,
users’ explorations can be clustered using the feature vectors contain-
ing the time spent on each visual element (Equation 2), the vectors of
TF-IDF values (Equation 3), or the highest level exploration unique-
ness metric values. Similarly, both the two-dimensional wavelet power
spectrum and the corresponding pacing metric can be used as features
for machine learning algorithms.

6.2 Benefits and Tradeoffs of Interaction Metrics

All of the metrics in our evaluations may prove beneficial to user be-
havior analysis in visualizations, due to their ability to uncover differ-
ent facets of peoples’ explorations. However, potential adopters need
to be aware of certain properties of these metrics in order to apply them
correctly. We now compare the metrics in our evaluations according to
a list of criteria focusing on barriers such as interpretability, and derive
initial guidelines on when and how to use these metrics.

The criteria used for metric comparison are adapted from the works
in relevant fields evaluating metrics [11, 33, 10], and are listed from
lower to higher perspectives (i.e., from metric computation to human
perception and cognition):

Computational cost (computational level): How much does it
cost for the metric computation? The computation of some met-
rics is trivial, such as number-of-visited-elements. However, there
is a certain level of complexity required to compute other metrics
e.g., exploration-uniqueness. The computation of exploration-pacing
requires more resources and its complexity depends on the choice
of convergence parameters. The computation of bias-data-point-
coverage includes power operations on the number of interactions per-
formed by the user, i.e., Nk where N is the number of all the interactive
elements in the visualization, and k is the number of interactions per-
formed by the user. This suggests that extra steps may be needed to
avoid the overflow caused by large numbers when dealing with an ex-
ploration session where a user interacts with the visualization a lot,
e.g., k > 100.

Computational context (computational level): Does the met-
ric computation require extra context, i.e., out of the single user
scope? Among all the metrics in our evaluation, the computation of
exploration-uniqueness depends on the interaction logs not only of
the current user being considered, but also those of the other users
within the same group, while the computations of other metrics, e.g.,
exploration-pacing are only based on the current user, i.e., no extra
context needed. This property influences the practical usage of a met-
ric, e.g., a reasonable number of users should be selected when com-
puting the exploration-uniqueness metric.

Comparability (application level): (How) can the metric values be
compared? All of the evaluated metrics are comparative because they
are quantitative measures of scale. The comparability of exploration-
uniqueness is constrained because the metric values are only compara-
tive within a TF-IDF computation group, i.e., it is not feasible to com-
pare the metric values of two users in different computation groups.
The values of the exploration-pacing metric can be compared across
user groups if the same set of parameters are used for the computation.

Interpretability (cognition level): How easily can the metric be
understood or interpreted by human? The proposed metrics have dif-
ferent levels of interpretability. Metrics such as exploration-time and
number-of-visited-elements could be considered readily interpretable,
since people can easily understand the meaning of the values (e.g.,
10 elements, 15 seconds). The values of some other metrics may re-
quire more cognitive effort to interpret, e.g., exploration-uniqueness,
exploration-pacing and bias-data-point-coverage.

Knowledge coverage (cognition level): How much additional
knowledge does the metric cover given other metrics? This dimen-
sion evaluates whether proposed metrics can uncover characteristics
of users’ exploration that other metrics do not capture. By examining
correlations between metrics, we found that both proposed metrics,
exploration-uniqueness and exploration-pacing may reveal different
perspectives from other metrics.

7 FUTURE WORK & CONCLUSION

Despite their advantages, there are also limitations with the proposed
metrics. For example, the uniqueness metric focuses on an interac-
tion set, ignoring ordering effects, which may be another source of
exploration diversity. The visualizations tested thus far are also con-
strained in interaction scope, implying that more complex interaction
schemas may require more sophisticated approaches for developing
useful metrics. Further, there are currently no established guidelines
in the visualization community for evaluating other characteristics of
proposed metrics, such as consistency, discriminability, and reliability.
Given the changing landscape of visualization in the world, addressing
challenges such as these may be fruitful areas for future work.

Each day, thousands of people interact with thousands of interac-
tive visualizations across the web’s vibrant and growing visualization
ecosystem. However, our metrics for quantifying facets of peoples’
open-ended explorations with these visualizations are lacking, as they
are primarily based on low-level metrics such as elements visited or
time spent exploring. The aim of this work is to characterize, develop,
and evaluate metrics for visualization interaction that can be used in
a variety of settings. We introduce two new metrics, uniqueness and
pacing, and evaluate these metrics alongside those proposed in earlier
and more recent research in visualization. The results of these evalua-
tions suggest that, indeed, new metrics may provide new perspectives
on how people interact with the visualizations they come across. We
discuss the broad potential applications of new metrics for visualiza-
tion interaction analysis, and enumerate some of the challenges future
work in interaction metrics may face in the future.
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