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While traditional interfaces use static designs that are meant to reach as

many people as possible, research shows that a user’s moment-to-moment state can

impact interaction, either positively or negatively. In this thesis, I show that brain

sensing can be used as passive input to intelligent information delivery systems.

Using functional near-infrared spectroscopy (fNIRS) as a lightweight brain sensor, I

present work to design brain-computer interfaces (BCIs) that analyze brain data and

classify user state in real time. These systems react to user state by modifying the

flow of information and measurably improving user performance. I describe a brain-

driven recommendation system that changes which information is prioritized to the

user, an intelligent interruption system that uses brain data to determine opportune

moments of interruption, and a study that demonstrates the brain’s sensitivity to

visual design. Finally, I discuss design strategies for building robust online systems

that adapt to physiological input. I suggest that someday our computers may have

the capability of being personally attentive to us — optimizing when information is

delivered, which information is prioritized, and how information is presented.
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Chapter 1

Introduction

1.1 Brain-Computer Interfaces: From Alternative to

Augmentative Input

An interface is said to be a brain-computer interface if it allows a user to com-

municate with external devices through thought processes alone [36]. For much of

their history, brain-computer interfaces (BCI) have used brain signals as an alterna-

tive input to the computer. Rather than moving, clicking a mouse, or typing on the

keyboard, direct-control (or active) BCIs use the brain as a primary input mech-

anism to the computer, substituting for other input mechanisms. Direct-control

BCI is often used for a user without full motor capabilities, making it di�cult or

impossible for them to use a mouse or keyboard. For these users, the brain may be

one of few available input channels to the computer [175]. BCIs have been used as

keyboard-substitutes [181], controls for wheelchairs [56], and even to direct robotic

limbs [15]. These are powerful applications that directly allow users to accomplish

tasks that previously may have been impossible.

As brain sensors have become cheaper and more lightweight, there has a been

a push towards integrating them into the consumer space. However, broadening the

user base necessitates a reimagining of the use of brain-computer interfaces [18].

Direct-control BCIs are often cumbersome and slow, relying mental triggers that
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interfere with normal interaction (i.e., a user thinks about moving their right arm

to move the mouse to the right side of the screen). Mouse movement or keyboard

use is both easier and faster for users with full motor capabilities. For the short

term at least, direct-control BCI has little utility for the everyday worker.

In contrast to direct-control BCI, new work has begun to consider how to

use the brain as an augmentative input to the computer. Rather than using the

brain as a replacement to an existing input modality, passive brain-computer in-

terfaces (pBCI) use the natural thought processes of users to supplement existing

interactions. For example, instead of performing explicit mental triggers to mute

our phones while driving, a passive BCI might detect that user is busy with driving

and automatically filter incoming phone calls and text messages.

However, there is currently very little work that considers BCI applications

for the everyday user. Most brain sensing technology is not well suited for the

working environment, enforcing strict movement constraints on the user in order to

reduce the impact of motion artifacts. In addition, monitoring physiological data

presents problems to interface designers. Brain data is often noisy and di�cult to

interpret, making the automatic detection of user states a non-trivial task.

Despite these challenges, using the brain as a passive input has the significant

advantage that it does not interfere with users’ normal behavior. Acting purely as

an augmentative input is particularly beneficial for applications such as information

delivery, in which minor interruptions or perterbations may adversely impact a

worker’s performance. Ideally, a computer could monitor users’ brain activity and

predict the best information to give them at any given moment, much in the same

way that people observe and react to the social cues [128].

1.2 BCIs for Information Delivery

People consume information at many di↵erent times and in many di↵erent ways.

We read news articles, shop for products online, monitor information streams, stay

updated with our social networks, receive text messages, sift through emails, and

2



monitor instant messages. However, a 2012 Pew Internet Survey found that 25%

of smartphone owners believe their device makes it more di�cult to focus on a

task without being distracted, and 67% of cell owners find themselves checking

their phone for notifications even when they dont notice their phone ringing or

vibrating [149]. While the advent of new information delivery services and devices

has expanded our capacity to access timely information, our biologocal capacity to

see and understand information has not changed. Attention has become a scarce

resource.

The consequences of misappropriating attention are well documented. Con-

suming too much information, consuming the wrong type of information, or con-

suming information at the wrong moment can not only lead to a decrease in working

performance, but negatively impact stress and anxiety [10, 24, 149]. For example, a

recent analysis of 10,000 programming sessions found that the average programmer

takes 10-15 minutes to continue editing code after a single interruption [121]. A

survey issued in the early 2000s even went so far to suggest that the stress of in-

formation overload can negatively impact personal relationships or perceived health

[13].

Complicating matters, information accessibility is also rapidly increasing,

leaving similarly increasing demands on the user. Wearable computing devices such

as Google Glass can move information delivery from locations that are peripheral

to the user to a visual location that immediately draws attention. This tension be-

tween an increasing quantity of information and the increasing accessibility of that

information leaves technology at a crossroads: As information increases, how

can technology prevent users from becoming overwhelmed by informa-

tion? When is the best time to give someone new information so that it won’t be

disruptive? Which information is most helpful (or unhelpful) to us at any given

moment? How should information be delivered to users that makes the most sense

to them?

But humans are not inherently poor at handling information. In fact, we

already navigate and share a wealth of information in social interactions that don’t

3



come from their computer devices. Our brains are wired to attend to the people

we interact with, and communicate with them in a way that is both e↵ective and

appropriate. For example, research has shown that when teachers detect that their

students are bored, they change the way they teach: increasing the physical space of

their gestures and modifying the tone of their voice to regain the attention of their

students [31]. However, this adjustment only works because the instructor observes

a less-than-ideal state in his or her students. The students’ engagement improves

only because their teachers adapt to their needs in real time.

Our devices miss these non-verbal cues. They do not understand when users

are bored or excited or happy or frustrated. Consequently, they cannot adapt to

keep the user interested or adjust to prevent the user from becoming overwhelmed. If

the computer can be considered a collaborator, it is a collaborator which frequently

breaches the social rules we apply to each other. While a computer infringing on

social norms may seem trivial, research has suggested that people unintentionally

treat computers as social entities [113, 112], and that ‘polite computers’ can signif-

icantly improve user interaction and performance [120, 115, 169, 176, 177]. In fact,

frameworks that describe emerging interaction techniques frequently suggest that

they should be ‘natural’, or grounded in our real-life experiences [88, 172].

The source of these miscommunications echo a fundamental problem in the

field of human-computer interaction (HCI): the amount (or quality) of information

that the computer has about us pales in comparison to what people naturally absorb

about each other. Put succinctly, the bandwidth of communication between com-

puters and computer users is too small to construct an attentive computer. Just as

the speed at which people navigate the web is limited by their internet bandwidth,

the information that computers access in order to respond to users is limited by the

bandwidth of its input devices. Relying exclusively on input from a keyboard or a

mouse or even a touchscreen falls far short of the full descriptive range of human

expression. The computer simply does not have enough information about its user

to react in the same way that people react to each other. Until the computer su�-

ciently understands the user and his or her context, the delivery of information will

4



continue to be a significant challenge.

To help address this problem, researchers have investigated new methods

of communicating with the computer. Tangible computing, multitouch screens,

and gesture recognition, for example, have all allowed users to communicate with

their devices in ways that were not possible in the past. And while these new

input modalities have largely been successful, the bandwidth still leaves much to be

desired. It is with this motivation in mind that we return to monitoring the brain

and a powerful source of input to the computer.

In one of the first published papers that considered the use of brain sensing

in Human-Computer Interaction, Cutrell and Tan [39] write the following:

In many ways a brain-computer interface is the holy grail of HCI

research. The idea of direct neural control of computational systems

goes to the heart of what HCI researchers and designers are all about:

creating usable and useful systems that are intuitive and just work like a

user wants them to. One definition of HCI is to improve the impedance

match between computer systems and the people that use them, and BCIs

are the epitome of that goal.

The prospect of building an interface, or an information delivery system,

that always delivers information when we expect and and how we would expect

is an appealling one. However, as the Cutrell and Tan mention later in the paper,

“reality is a bit more sobering; we are a long way from the Matrix”[39]. The brain is

complex, neural data from sensors is noisy, and users’ natural working environments

often introduce complex and di�cult-to-control variables. As a result, while brain-

computer interfaces have existed for decades, the translation of this technology into

everyday life has largely remained an idea for the future.

In this thesis, I investigate functional near infrared spectroscopy (fNIRS) as

an alternative brain sensing device that circumvents some of the traditional problems

of other brain sensing technology, and consider its potential as input to information

delivery applications. fNIRS is an optical brain sensing device that has the poten-
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tial to lend insight to working-place interactions [26, 129, 167, 174], observing the

same physiological parameters as fMRI. It is relatively tolerant to minor movement

artifacts and generally valued for its potential to attain ecologically valid measure-

ments. While there are many advantages and considerations to the use of fNIRS

(many of which will be communicated in the following chapter), in the context of

passive BCI, it remains a largely unexplored technology.

Examples of using fNIRS as passive input to intelligent systems are few and

far between, and there has been no work that directly connects fNIRS input to

information delivery. As a result, there is a poor understanding of whether fNIRS

can serve as input to information delivery systems. Is fNIRS capable of identifying

information that is beneficial to the user - which should be emphasized, when should

it be delivered, and how should it be presented? How should this unique, but

potentially noisy, input be used in the design of intelligent systems?

1.3 Purpose and Outline of this Work

The high-level goal of this thesis is twofold: First to expand the bandwidth of

interaction between the user the computer through the use of passive brain sensing,

and more specifically, functional near-infrared spectroscopy (fNIRS). By using fNIRS

to monitor user’s mental state, we enable the computer to access cues that are

closer to those that humans identify in each other. Second, to demonstrate that our

computing devices can utilize these cues to deliver information to us in a way that

is specially calibrated to our unique moment-to-moment state.

In this thesis, I attempt to answer the following high-level questions: Can

the brain be used as passive input to an intelligent information delivery

system? Can a brain-computer interface personalize how information is

presented, which information is prioritized, and when it is delivered?. To

move towards this goal, I structure the remainder of this thesis in the context of the

following contributions:

• In Chapter 3, I use the field of information visualization to show that brain
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sensing can be used to capture cognitive di↵erences that relate to how infor-

mation is presented [130, 125]. I also discuss the importance understanding

individual cognitive di↵erences to evaluate information visualization, propos-

ing a framework of individual cognitive di↵erences [131].

• In Chapter 4, I demonstrate that brain sensing can be used as passive input to

a system that personalizes which information is presented to the user [126]. In

this study, fNIRS is used as the sole input to an information-filtering system

which provides users with improved recommendations over time.

• In Chapter 5, I show that fNIRS can be used as passive input to an intelli-

gent interruption system that combines neural markers of which information

is relevant, and when a person is capable of handling an interruption. In addi-

tion, I outline the potential of an intelligent information delivery system that

optimizes the content, presentation, delivery timing of information.

• Finally, I discuss the strategies that enable brain-computer interfaces to im-

prove user performance despite potentially noisy data. In particular, I focus

on applications in which users do not have strong expectations of incoming

information, and graded adaptation strategies that depend on the integrity of

the brain input.

Taken together, I suggest that brain-computer interfaces, and more generally

physiological data, have the potential to one day form the backbone of intelligent

information delivery systems.
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Chapter 2

Related Work

The design and construction of a brain-computer interfaces often requires drawing

on knowledge from multiple fields: neuroscience, biomedical engineering, human

factors, computer science, and behavioral psychology. As a result, the space of

potentially related work is enormous. However, in this section we focus primarily

on the application of brain-computer interfaces to everyday users. In particular, we

first survey the existing state of passive brain-computer interfaces alongside some of

the challenges of constructing implicit interfaces. Finally, we review the analysis and

application of functional near infrared spectroscopy within the context of human-

computer interaction [127].

2.1 Passive Brain-Computer Interfaces

Contrary to BCIs that are used as explicit (and often alternative) input, passive

brain-computer interfaces take advantage of naturally occuring signals in the brain.

Zander et al. [183] identifies three significant characteristics that distinguishes pas-

sive approaches from direct-control BCI:

• Complementarity: passive input does not interfere with the natural thought

processes of users.

• Composability: an application can use passive brain input in parallel with
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other passive inputs with no conflict. For example, brain sensing, heart rate

monitoring, and keyboard input can all be monitored and integrated in an

intelligent system.

• Controlled Cost: since there is no cognitive cost to operate a passive BCI,

the cost of using a passive BCI is impacted only by system misclassifications.

As a result, it is possible to design systems that provide zero benefit in the

worst case (as opposed to a negative impact) [183]. Throughout this thesis,

we frequently reference this challenge to design implicit adaptations that are

no cost in the worst case.

Despite the di↵erences between direct-control BCI and passive BCI, their

fundamental architecture (or biocybernetic loop) has much in common with each

other, as well as with other systems that are driven by physiological input. The

biocybernetic loop is initiated by sensor information (in this case, from the brain),

where the system applies filters to reduce noise and extract relevant features of

the signal. Then the filtered data is mapped to a user state such as workload or

emotion. This can be done either through simple threshholds, or more complex

algorithmic solutions. Finally, the system chooses to respond to this mapping (the

exact conditions for whether the system responds is called the adaptive trigger)

through a designed adaptive mechanism. Once the system’s response is experience by

users, their second-order experience may be translated to a physiological response,

thus completing the biocybernetic loop. Later in this chapter, we expand on the

details of this process as it is related to fNIRS.

Returning back to the bandwidth problem in HCI, a passive source of infor-

mation can serve as an augmentative source of input that improves and expands the

bandwidth between computers and users. In fact, Cutrell and Tan[39] suggest that

brain sensing may epitomize a central goal of HCI: creating an “impedence match”

between people and their computer devices.
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2.1.1 Examples and Applications of Passive BCI

While the notion of using the brain as passive input has been discussed and refer-

enced for decades, their proper use and application is still largely considered to be an

open question. In particular, there are few unifying frameworks or design guidelines

that tie together existing prototypes. In 2010, George and Lecuyer [57] surveyed

existing research on passive BCI and classified them into four primary categories:

1. Adaptive Automation: Refers to a switch in control of some aspect of the

system from manual to automatic (and back). In Solovey et al. [150], a robot

switched from manual navigation to automatic navigation based on neural

metrics related to multitasking. We use this as a case study for fNIRS in BCI

in a following section. For other examples, see [3, 93, 133].

2. Multimedia Content Tagging: Neural predictions of user state (often emo-

tion) are used to tag multimedia content, such as music or video for later use.

This approach has also been used in contexts in which analysts are looking for

a specific objects in images. Identifying the object triggers a neural response

that allows a system to automatically tag a response faster than manual tag-

ging would allow [89, 99].

3. Video Games: Brain activity is mapped to some variable in a video, such as

music [59] or the shape of an avatar [65].

4. Error Correction: Taking advantage of the quick temporal response of EEG,

these BCIs attempt to identify moments when users realize an error and au-

tomatically correct it for them. For example, [104, 144, 165, 182]

Other categorizations of passive BCI shift the focus from application domains

to user state detection. For example, Molina et al. [107] proposes emotion BCI in

which computing devices react to naturally occuring emotions by users. Zander pro-

poses a similar brand of passive BCIs that detect a↵ective covert user states [182].

While BCIs that perform multimedia content tagging often take advantage of emo-

tion state detection, these definitions broaden the scope of emotion BCIs beyond
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this specific application area to include systems that respond to user frustration

[182], or attempts to more accurately predict user behavior [107].

It’s worth noting that passive BCI shares a close neighbor to systems that are

driven by physiological measures. In fact, the umbrella term physiological comput-

ing systems (PCS) is increasingly being used to reference applications that accept

either brain or body sensors as input to the system. This broadening of the space

encorporates a number of systems that have investigated the impact of physiological

metrics on games [46, 110, 111], the presentation of content [69, 178], and adaptive

automation [19, 97] just to list a few. In addition, other categorizations arise when

considering physiological input. For example, Gilleade and Dix [58] proposed the

following classification of game adaptations that can broadly be applied to other

applications as well:

• ‘Assist-Me’: adaptations attempt to limit the user’s frustration with a game.

• ‘Challenge-Me’: adaptations attempt to optimize the level of challenge a

user experiences in a game (not unlike the adaptive automation BCIs desribed

above)

• ‘Emote-Me’: adaptations that are meant to induce an emotional response

(such as fear in a horror game).

We can also consider physiological computing systems within the framework

of this thesis: when information is delivered, how it is presented, and which infor-

mation is delivered. Adaptive automation mediates when the system hides a layer

of complexity to the user (through automation). Similarly, content tagging moves

towards interfaces that manipulate which information is presented. However, none

of the referenced work uses its neural tags to improve the user’s experience with

the system, leaving an incomplete biocybernetic loop. We will present the first full

implementation and evaluation of this idea in chapter 4. Finally, Szafir et al. [159]

constructs of one of the few examples of a BCI that manipulates how information

is presented. In their work, students are tutored by a robot that adapts its pre-
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sentation of a story based on the students’ level of engagement (deteced by EEG).

We propose the application of this idea to information visualization, a field that

places significant emphasis on optimizing the representation of information, and in

chapter 3, show that fNIRS can detect changes in cognitive state that derive from

visual design.

2.1.2 Building Implicit, Adaptive Systems

To this point, we have discussed passive BCI primarily from the perspective of appli-

cation domains without discussing the details of the system’s adaptations. However,

designing how the system responds to passive input is not trivial [47]. Critics of

adaptive interfaces contend that changing a system’s behavior ‘on the fly’ may result

in making the system unpredictable and inconsistent, negatively impacting perfor-

mance [49, 146]. Fairclough warns that if researchers ignore the complexity of these

challenges, “the performance of prototype systems will be erratic and unreliable,

which runs the risk of premature abandonment” [47].

As a result, design needs to minimize these disruptions to a user’s mental

model. For example, Gajos et al. [55] found that using split interfaces to duplicate

(rather than move) functionality can be used as an adaptive mechanism that o↵ers

‘medium to high benefits while causing minimal confusion’. We adopt the phrase

implicit interfaces to suggest system adaptations that are subtle and gentle, nudging

the user towards a predicted goal.

Although we have motivated information delivery as potentially a compelling

application of brain-computer interfaces, it is also is well suited to these design goals.

Incoming data streams (whether it is email, Twitter, etc.) consistently deliver new

information to users. Since the timing and content of this information is largely

outside of the user’s control, there are characteristics about the data that can be

modified without severely disrupting the user’s mental model of the system.

Assessing the impact of an adaptive system can also be di�cult. Most com-

monly, they are judged on three primary variables: usability, perceived usefulness,

and appropriateness of adaptation [163]. However, in a survey of 63 adaptive sys-
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tems, Van Velsen found that there was significant diversity in the measures that

researchers collected, organizing them in five broader categories [163]:

• Attitude and Experience: appreciation, trust and privacy issues, user ex-

perience, user satisfaction

• Actual Use: usability, user behavior, user performance

• System Adoption: intention to use, perceived usefulness

• System Output: appropriateness of adaptation, comprehensibility, unobtru-

siveness

In fact, many studies find usability tradeo↵s in adaptive interfaces [124]. For

example, Gajos explored tradeo↵s between accuracy and predictability (what did

the user expect to happen?) in adaptive menus [55]. While many studies rely on

accuracy (how well the system inferred the user’s state) as a primary measure of

success, it is a measure that does not necessarily reflect the user’s experience or

e�ciency of the system [95].

To further complicate evaluation, it is not clear how to obtain objective

sources of data about the system. Questionnaires may be unreliable, and interviews

or think-aloud protocols can provide shallow sources of information [163]. As a

result, it is suggested that data logs are triangulated with other data sources in

order to obtain a clear portrait of the system’s success. In this thesis we frequently

compare the fNIRS signal with survey responses and behavioral data to construct a

clear portrait of the user’s interaction.

2.2 Introduction to Functional Near Infrared Spectroscopy

Functional near infrared spectroscopy (fNIRS) is an optical brain sensing technique

developed in the 1990s that is portable, resistant to movement artifacts, and ob-

serves similar physiological parameters to functional magnetic resonance imaging
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(fMRI) [26, 79, 152]. These characteristics have made it an attractive alternative

for researchers seeking to observe the brain in natural working environments.

fNIRS uses near-infrared light to measure concentration and oxygenation of

the blood in the tissue at depths of 1-3cm [167]. Light is sent into the forehead in the

near infrared range (650-900 nm), where it is di↵usely reflected by the scalp, skull,

and brain cortex. At this wavelength, oxygenated and deoxygenated hemoglobin

are the primary absorbers of light. A very small percentage of the light sent into

the head returns from the cortex to the detector on the fNIRS probe. By measuring

the light returned to the detector, researchers are able to calculate the amount of

oxygen in the blood, as well as the amount of blood in the tissue.

Figure 2.1: Left: An fNIRS probe with four light source and one light detector.
Right: Two fNIRS probes are secured on a participant’s forehead using a headband.

Biologically, when a region of the brain is active, there is an increase of

blood flow to that region [44]. This increase of blood flow is typically coupled with

decreased levels of deoxygenated hemoglobin and increased levels of oxygenated

hemoglobin. Thus, fNIRS can be used to measure activity in localized areas of the

brain.

To make this calculation, raw data can be transformed into deoxygenated

hemoglobin concentrations using the modified Beer-Lambert Law:

�A = "⇥�c⇥ d⇥ B (2.1)

where �A is the change in attenuation of light, " is the molar absorption
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coe�cient of the absorbing molecules, �c is the change in the concentration of the

absorbing molecules, d is the optical pathlength (i.e., the distance the light travels),

and B is the di↵erential pathlength factor. The attenuation of light is measured by

how much light is absorbed by oxygenated and deoxygenated hemoglobin (which are

the main absorbers of near infrared light at these wavelengths). As the attenuation

of light is related to the levels of hemoglobin, given �A, we can derive the changes

in the levels of oxygenated and deoxygenated hemoglobin [26].

For the sake of focus, we will primarily discuss fNIRS probes that are placed

on the forehead, measuring brain activity in the anterior prefrontal cortex. This

placement o↵ers a significant advantage for researchers: fNIRS measurements can

be made without the interference of hair follicles, which can absorb light and disrupt

the signal. As a result, probes that monitor activity in the prefrontal cortex are

often more unobtrusive, and therefore, more interesting for researchers searching for

ecologically sound measurements.

2.2.1 Comparison with other brain sensing techniques

In the past, various brain sensing technologies have been proposed to observe a user’s

response to activities in a lab setting. Electroencephalography (EEG) and functional

magnetic resonance imaging (fMRI) are two of the most prevalent and both have

been successful at measurement and classification of brain activities. fMRI requires

a person to lie motionless inside a large, loud chamber in which small movements

(those larger than 3mm) often result in discarded data (i.e. [20, 40]). fMRI scanners

are also expensive to purchase and maintain, requiring technical sta↵ and purpose-

built rooms or buildings.

EEG has recently seen commercial success because it is portable, less inva-

sive, and relatively inexpensive. While EEG has a high temporal resolution, it also

has a low spatial resolution, which makes it di�cult to pinpoint the origin of neural

activity. Although EEG is easier to set up and use than fMRI, many configurations

require applying gel into a person’s hair to create a conductive contact with the

skin. Finally, movement artifacts can be problematic with the use of EEG. With-

15



out proper filtering methods, minor movements, such as facial muscles can disrupt

incoming data. Despite these limitations, EEG has gained popularity because of its

quick temporal response (1 ms), the strong existing body of EEG research, and the

availability of well-supported commercial setups.

2.2.2 fNIRS Advantages

While fNIRS preserves some of the core features that make EEG a popular brain

sensing technology, most notably its ease of use and portability, fNIRS also has a

few unique properties that are worth considering. For example, fNIRS has a short

setup time and is generally resistant to movement artifacts [78]. Mouse-clicking,

typing, eye movement, and blinking in normal computing environments are accept-

able during the use of fNIRS [152], and minor head movement, respiration, and

heartbeats can be filtered using known signal processing techniques. More major

head or forehead movements (which could be induced by frowning) are disruptive

to the signal

fNIRS also has a spatial resolution on the order of 2-3cm, and readings have

been validated against fMRI [157]. Furthermore, fNIRS provides access to hemody-

namic and metabolic parameters that are not accessible with EEG (which is sensitive

to electrical signals and not to blood flow or tissue oxygenation) and fMRI (which

is only sensitive to deoxygenated hemoglobin and not oxygenated hemoglobin).

2.2.3 fNIRS Considerations

It’s important to note that there are both caveats and considerations to the use of

fNIRS as well. Once a region of the brain becomes active, the biological response

to support this increase in activity takes several seconds to reach the cortex [63].

As a result, changes in blood oxygenation that reflect user state cannot be detected

immediately using fNIRS.

The impact of this limitation is two-fold. First, we are more likely to measure

signal di↵erences in short-term and long-term cognitive states rather than instan-

taneous one-time events. Second, because the slow biological response impacts how
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quickly we can identify or classify user state, it also impacts the design of adaptation

mechanisms in biocybernetic systems that respond to fNIRS user state. In a later

section, we will discuss some design considerations that can help circumvent this

issue.

Because light from fNIRS reaches depths of 1-3 cm, activity in deeper areas of

the brain is not directly accessible. Additionally, hair can obstruct light, so sources

and detectors must be maneuvered to maintain contact with the skin [36]. Although

there are several variants of full-head fNIRS devices [51], most are noticeably less

comfortable than probes designed exclusively for the forehead.

In an HCI setting, it is important to maximize comfort without sacrificing sig-

nal quality [67]. Recent research suggests the implementation of brush optrodes [173]

to help maintain a more comfortable contact. In addition, proof-of-concept stud-

ies have begun to investigate non-contact fNIRS, using light sources that do not

maintain direct contact with the skin [141]. While these projects suggest an evolved

trajectory of fNIRS sensors into the future, many fNIRS researchers limit their in-

vestigation of neural activity to the prefrontal cortex (PFC), an area of the brain

situated behind the forehead, to circumvent these issues. For the remainder of this

thesis, the studies discussed will refer to the use of fNIRS on the PFC.

2.3 Analysis and Classification of fNIRS Data in HCI

Although the history of fNIRS analysis and classification is deeply embedded into

neuroscience and biomedical science, we focus primarily on applications to Human-

Computer Interaction. This is largely because the high-level objectives in HCI di↵er

from those in other domains, which may seek to study the functionality of the brain.

These studies place strict restrictions on participants in an e↵ort to prevent muscle

movement from contaminating the signal, and use extremely controlled experimental

designs that are typically divorced from realistic use-cases. Finally, analysis is always

performed o✏ine, or after the experiment, as there is no incentive to obtain results

during experimentation.
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Conversely, a major objective for using fNIRS in HCI is obtaining ecologically

valid evaluations of the user, which necessitate a less-controlled environment in

which movement artifacts are more likely to be present. Investigating the inner-

workings of the brain often is not the primary objective of physiological studies in

human-computer interaction. Instead, researchers focus on trying to obtain reliable,

generalizable correlations between physiological signals and user state. Finally, a

necessary component of constructing adaptive systems is the classification of fNIRS

data in real-time, further nudging analysis away from o✏ine, heavily controlled

environments.

In the sections below, we survey di↵erent analysis methods either directly

from the HCI literature or from studies that analyze fNIRS data with similar goals

in mind (for example, for use in brain-computer interfaces).

2.3.1 Statistical Analysis of Oxy-Hb and Deoxy-Hb

One method for using fNIRS to investigate changes in cognitive state is the statistical

analysis of changes in oxy-Hb and deoxy-Hb. Recall that as brain activity increases,

we generally observe increases in oxy-Hb and decreases in deoxy-Hb. By analyzing

the changes in these parameters during a user’s interaction with a complex task, we

can hypothesize the level of activity in the user’s prefrontal cortex. Here, we share

two examples of studies that have performed o✏ine analysis of changes in oxy-Hb

or deoxy-Hb to investigate workload levels.

Ayaz et al. [7] used this approach to detect the level of workload for partici-

pants piloting unmanned air vehicles (UAVs). In this task, participants were asked

to sit at workstations and direct simulated air tra�c, trying to prevent accidents.

The number of UAVs was varied (6, 12, 18) between trials and the mean change in

oxy-Hb was calculated over the course of each trial.

As users were forced to keep track of more UAVs, fNIRS detected increased

levels of oxy-Hb in the PFC. Ayaz found these changes to be comparable to those

observed during interacton with the n-back task - a well-characterized psychological

task for increasing working (or short-term) memory load. Increased levels of oxy-Hb
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also correlated with self-reported NASA-TLX workload measures, further validating

the detection of signals that point to workload.

In another translation of fNIRS measures to real world environments, ac-

tivity was recorded as participants were engaged as part of a human-robot team

[153]. In this task, participants engaged in a multi-tasking assignment that could

not be accomplished by the human nor the robot alone. The study investigated three

classifications of multi-tasking — delay, dual-task, and branching. While branching

required participants to maintain the context of a primary task while exploring a sec-

ondary task, users did not have to maintain this context in the dual-task condition,

and they completely ignored the secondary task in the delay condition. Analyz-

ing the mean combined hemoglobin (deoxy-Hb + oxy-Hb) for each participant, the

branching condition was found to have higher levels of combined hemoglobin than

either the dual-task or the delay conditions. In a second experiment that com-

pared changed in deoxy-Hb in random interruptions with interruptions that could

be predicted by the user, Solovey found that random interruptions provoked sharper

decreases in deoxy-Hb.

Although o✏ine statistical analysis is limited in its direct application to

brain-computer interfaces, this methodology serves as common first-step in estab-

lishing a foundation for using fNIRS to detect new user states or apply fNIRS to

di↵erent domains. In chapter 3, we use a similar technique to validate the use

of fNIRS for evaluation of information visualization interfaces, or analysis of how

information is presented to users.

2.3.2 Automatic Detection of User State

If fNIRS is to become a viable tool for analyzing mental state during interaction

with an interface, it would be ideal for the analysis of fNIRS signals to move from a

manual to an automated process. In this section, we discuss work that has employed

the use of predictive models to objectively (and automatically) classify user state.
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2.3.3 Classifying Known User State

When the user’s intended state is known, some researchers have used predictive

models as a statistical method to show that multiple user states is separable [74, 60,

98, 106, 143, 142]. However, the true potential of these models is in the automation of

classifying fNIRS signals. This allows evaluators to avoid non-automated analysis

- a potentially time-consuming task if fNIRS is to be used as a tool in real user

studies. In these circumstances, researchers check the accuracy of their model by

using cross-validation techniques.

Figure 2.2: Probes with di↵erent numbers/locations of sources and detectors may
impact classification accuracy of user state. We show four probe configurations used
in studies described in section 5. Red circles are light sources and black squares are
detectors. In each case, probes would be centered on the participant’s forehead (a)
Moghimi et al. [106] (b) Luu and Chau [98] (c) Girouard et al. [60], Hirshfield et
al. [74], Solovey et al. [153, 150] (d) Ayaz et al. [7].

For example, Luu and Chau [98] used predictive models to distinguish be-

tween fNIRS signals during periods of low and high preference. In their experiment,

participants viewed pictures of soft-drinks that they either highly-preferred or did

not like at all. After identifying sensors that highly correlated with user preference,

they were able to predict the preferred drink with over 80% accuracy.

Similarly, Moghimi et al. [106] used fNIRS to measure participants’ emo-

tional responses to music, attempting to capture both valence (positive or negative

feelings) and arousal. They used linear discriminant analysis (LDA) to build a clas-
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sifier and found that they could distinguish positive and negative valence with an

average accuracy of 71.94%. They also found they could distinguish between high

arousal music and brown noise (low arousal) with an average accuracy of 71.93%.

Finally, Girouard et al. [60] measured users as they played a game of Pacman,

interacting with game modes that were both very easy and very di�cult. They

used a k-nearest neighbor (kNN) algorithm to classify game di�culty levels. While

Girouard found that they could distinguish between periods of play and non-play

with accuracy levels above 90%, distinguishing between easy and hard di�culty

levels yielded classifications just over 60%.

As Figure 2.2 suggests, the discrepancies in classification accuracy in each

study may stem from the various configurations of fNIRS probes as well as the

di↵ering analysis methods; the first two studies used configurations with significantly

more source-detector pairs. This provides two distinct advantages. First, increasing

the number of information channels decreases the potential for one noisy channel

to adversely impact a model. Second, these configurations provide better coverage

of the prefrontal cortex. For example, Moghimi et al. [106] showed that using

information from a source-detector pair on the anatomical midline of the prefrontal

cortex yielded the best overall accuracy in their model for capturing emotion. In

the next section, we go into further detail about how fNIRS is used as input to these

models.

In this thesis, I rely on the same set up used by Hirshfield [74], Solovey [153,

150], and Girouard et al. [60]. Although this may limit the signal coverage in the

prefrontal cortex, it serves as a suitable baseline for fNIRS usage, and opens the

possibility that use of a di↵erent system may increase classification accuracy.

2.3.4 Selecting fNIRS Features

When predictive models are created, we need to determine which features of the

signal are fed into the models. Choosing too many features with too few training

examples may result in the “curse of dimensionality” and low classification rates.

Choosing too few features, or incorrect features of the signal, may lead to a set of
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features that is not truly descriptive of the signal, also resulting in low classification

accuracy. Currently, there is no standardized approach to feature extraction. We

give four examples from current fNIRS literature:

• Solovey et al. [150] used the signal value from each time point and each channel

over the entire trial as individual features to a support vector machine (SVM).

• Luu et al. [98] used the average signal value, estimated from a specific channel

over a specific time interval within a trial (for example, 15-45 seconds).

• Hirshfield et al. [73] extracted the max signal value, min signal value, mean

signal value, slope, time to peak, and full width at half maximum.

• Moghimi et al. [106] used the mean and slope of the signal during each trial.

They also used the coe�cient of variation, mean di↵erence between signal and

noise, and a handful of laterality features.

As these examples suggest, there is yet to be a prevailing consensus about

which features of the fNIRS signal potentially result in the highest levels of accuracy.

However, there are at least two dominant approaches to feature selection used in

current fNIRS literature.

The first is to manually select a set of features based on an expert’s knowledge

or personal experience. For example, based on the changes of deoxy-Hb in response

to load on working memory that we observed in Figure 3.7, the mean change in

deoxy-Hb would appear to be a good indicator of low/high load on working memory.

In a finger-tapping task, Cui et al. [37] show that including both oxy- and deoxy-

Hb information to a predictive model improves accuracy. They also found that

increasing the number of information channels improves accuracy. Broadly speaking,

because the mean change in oxy-Hb is often used in the statistical comparison of

fNIRS signals, it stands to reason that this feature is a good starting point for input

to a model.

Using feature selection, context is important. Cui et al. [37] note that the

features they chose were “necessarily dependent” on the classification technique (in
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their case, support vector machines), and may be dependent on the task. One in-

teresting distinction is that each of the previous examples is event-related — they

observe how the fNIRS signals respond following a discrete moment in time. How-

ever, to serve as input to biocybernetic systems, it is often desirable for evaluators

to view a moment-by-moment picture of workload, introducing new challenges. For

example, task starting times, end times, and length may be undefined.

Given these challenges, an alternative approach is to select a large feature

space. Then, using the participant’s data, automatically determine which features

yield the most information for each individual (for example, Luu et al. [98]). While

this method often results in higher cross-validation classification rates, there is a

danger that we may be building a model that succeeds on a particular dataset

rather than one that represents a more general user state. We must take care not

to overfit the model to the user’s data, making it less flexible and robust for real

world environments, not to mention less meaningful for HCI. In the next section, we

describe how research is attempting to construct more generalized models of user

state for real-time monitoring.

2.3.5 Classifying Periods of Unknown State

Unfortunately, in normal user evaluation, researchers often do not know in advance

the true label (or user state) of a given period of fNIRS data, or even when that

user state may begin. To help solve this problem, Hirshfield et al. [73] proposed

a methodology for using machine-learning techniques to classify user state in these

scenarios.

1. Choose cognitive benchmark tasks from the psychology literature that are

known to induce specific user states. For example, if we are investigating the

level of verbal working memory that a visual environment might induce, we

might run a participant on a demanding 0-back and 3-back task, representing

low and high levels of verbal working memory.

2. Next, we build a machine learning classifier to identify and store a cognitive
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footprint of the fNIRS signal during each level of the benchmark task. We

make the assumption that we have stored an accurate representation of verbal

working memory for this particular user.

3. Finally, the participant performs a set of tasks in a more complex environment.

We run the fNIRS data from those tasks on the classifier we built in the

previous steps. The idea is that we are comparing the fNIRS data from this

complex environment to the patterns we identified in the cognitive benchmark

tasks. Our machine learning classifier returns whether the signal most closely

matches low, medium, or high verbal working memory.

Hirshfield used this methodology to explore the working memory demand in

a driving task in which the steering controls were reversed [73]. In comparison to

more natural steering controls, the model classified incoming fNIRS data during the

reversed control condition as requiring high working-memory. In the same way, Hir-

shfield used the Stroop test to detect response inhibition during interaction with an

interfaces. We use this general structure as a foundation to move towards adaptive

brain-computer interfaces.

2.4 Using fNIRS in Adaptive Interfaces

One of the primary reasons we focus on algorithms that automatically classify the

fNIRS signal is that they enable fNIRS to be used as input to intelligent, adap-

tive systems. Because fNIRS is lightweight and does not place any unreasonable

restrictions on the user, it can feasibly be used to augment many operator stations.

In a real-time adaptive system, fNIRS data may be used as an additional implicit

or explicit input, relaying information about the user to the computer without any

further work for the user.

However, while fNIRS devices typically have a sharp temporal resolution, as

we have discussed, the biological signal is sluggish. As a result, there are limitations

to the systems that can be constructed. In this section, we discuss adaptive systems
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that use fNIRS as input, the limitations of such systems, and also identify domains

where these systems may thrive.

2.4.1 Calibration and Training

Similar to the training method previously described [74], in order to create a suc-

cessful biocybernetic system, users must first perform a task with a known cognitive

e↵ect in order for the system to calibrate to the characteristics of brain patterns of

each individual. However, the model must be very cautious since users are often in

a di↵erent mental state during o✏ine calibration and online feedback [166].

Ideally, we strive to minimize training time and maximize classification accu-

racy. Unfortunately, these two objectives typically compete with each other. Many

machine learning algorithms are traditionally designed with the assumption that

there are hundreds or thousands of training examples. But in an experimental set-

ting, training the user for hours on end is unreasonable. As a result, researchers

typically train users for as long as the ordinary time constraints of a user study al-

lows. However, as more research is done in this field, we may find universal patterns

that allow us to circumvent the training period. For example, using fNIRS, Her↵

et al. [71] found neural responses to speaking modes to be consistent enough to

construct a general classifier of accuracy of 71%. We suspect that similar general

models may be constructed for classification of other user states.

2.4.2 Brainput: A Real-Time fNIRS System

In this section, we give a concrete example of previous work that uses passive fNIRS

input to an intelligent system. Solovey et al. [150] created a system, Brainput, which

was able to adapt a scenario where an interactive human-robot system changed its

state of autonomy based on whether it detected a particular state of multitasking.

We pay special attention to this study because it serves as the primary example of

using fNIRS as input to a passive interface.

To train the system to detect these states, Solovey used a well-validated

multi-tasking exercise that had previously been explored using fMRI. Participants
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were shown either lower-case or upper-case letters of the word ‘tablet’. Depending

on the case of the letter, participants were instructed to perform di↵erent actions,

thereby resembling a multi-tasking environment. In a previous study (which we

described earlier), Solovey et al. [153] showed that this task could be used to identify

multi-tasking scenarios with fNIRS.

Figure 2.3: 3D View from the robots’ perspective in Solovey’s multi-tasking naviga-
tion environment. Automation was turned on or o↵ based on the user’s workload.

In the testing task, users were instructed to direct two robots through a

virtual environment to search for areas with strong transmission strengths, and were

told to not let the robots go idle or collide with walls or objects in the environment.

fNIRS signals from the participants’ prefrontal cortex were collected and classified

as one of two user states that described the multi-tasking load associated with

navigation. The second robot was autonomously controlled whenever the system

detected a state of branching, where the user must hold in mind goals while exploring

and processing secondary goals [150]. The changes occurred in real-time, allowing

the system to dynamically respond to the user’s individual, situational needs.
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Solovey found that more participants completed the task with fewer collisions

in this adaptive condition. However, to demonstrate that adaptation mechanism

was indeed reacting to correctly classified fNIRS data, Solovey also introduced a

maladaptive condition. This condition caused the system to intentionally perform

the opposite response that should aid the user. In this maladaptive state, users did

worse than in a nonadaptive condiation, and had a lower overall average transmission

strength than either other condition. This experiment provides a successful example

of using fNIRS as input to a real-time system that intelligently adapts to the user.

2.4.3 Applications and Opportunities

At least two other BCI implmentations exist that use fNIRS as input. Girouard et al.

[59] constructed the first working passive BCI that relied on fNIRS as input, applying

it to a simple game manipulation. Their work in building OFAC (online fNIRS

and analysis and classification) set the groundwork for the subsequent Brainput

system [150]. As a proof of concept to test OFAC, users were instructed to alternate

between playing a game of Pacman and watching relaxing videos. Building on

earlier work that di↵erentiated the signal in these two tasks, a musical score was

manipulated to increase it’s pace during real-time detection of game-playing and

classification of video-watching (or relaxing).

Afergan et al. [3] used fNIRS indices of workload to improve user performance

in the navigation of unmanned aerial vehicles. This system used the n-back task for

calibration, a psychology task that has been validated to induce varying loads of

working memory load (we provide a more detailed description of the n-back task in

Chapter 3, where it is used in the experimental methods). In the adaptive task, users

performed path planning of multiple UAVs around numerous obstacles (unmanned

aerial vehicles) while their workload levels were monitored using fNIRS. When the

operator was detected to be in a high state of workload for an extended period fo

time, the system decreased the user’s workload, removing a UAV from the screen.

When the operator was detected to be in a low state of workload for a long period

of time, the system increased the workload by adding a UAV. In comparison with
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a randomly adapting condition, Afergan found that the adaptive system resulted in

fewer operator failures, fewer obstacles entered, and fewer neglected UAVs [3].

Figure 2.4: Afergan et al.’s [3] dynamic di�culty BCI. Participants navigated UAVs
in a simulation to goals while avoiding obstacles. Based on fNIRS indices of work-
load, the system attempted to provide and optimal number of UAVs to manage.

Placing the previous studies in the context of this thesis, they use fNIRS to

manipulate a temporal aspect of information delivery - When would a user benefit

from the robot acting autonomously [150]? When should the user hear music dur-

ing interaction [59]? When is the optimal time to give a user more or less work [3]?

While they serve as strong examples of adaptive systems that can measurably im-

prove users’ interaction with their computer, this categorization also reveals open

opportunities.

In this work, I attempt to expand the use of fNIRS beyond temporal manip-

ulations of information delivery to those that also optimize the content or presen-

tation of information. In addition, I discuss adaptive strategies that enable these

systems to improve the user’s experience despite relatively low classification rates

from fNIRS.
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Chapter 3

How: Using fNIRS to Evaluate

Information Visualization

In order to build towards a system that can optimize its information delivery to the

user, I constructed a conceptual framework of questions that need to be answered:

when should the the computer deliver information, which information should the

system deliver, and how should the system deliver information? In this first chapter,

we begin by investigating what is perhaps the least explored of these three from a

physiological perspective - how.

To explore this question as it related to fNIRS, and eventually to adaptive

systems, we ground this work in the field of information visualization for two reasons:

first, it is a discipline that is centered around the representation of information.

Second, there have been numerous calls for stronger evaluation methods. That is,

current techniques for optimizing the visual representation to a person, or even a

group of people, remain unconvincing [23].

Finally, the potential of using fNIRS to inform the design of interactive in-

terfaces for visualization is appealing. If fNIRS can successfully measure the impact

of visual design on the user, then it can provide access to physiological parame-

ters that have not previously been analyzed in this context. Furthermore, it can

do so in ecologically sound settings that allow users to interact naturally with an
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interface [152].

In this chapter, I provide the first exploration of fNIRS in the context of

information visualization, and motivate the potential of personalized systems [131,

125, 2, 116, 126].

3.1 Motivation

The quantitative evaluation of visual interfaces has been a significant goal of both

the HCI and visualization community for decades. Numerous quantitative and qual-

itative approaches have been proposed to peek into the user’s cognitive processes

during interaction. Nevertheless, there are limitations to evaluating performance in

a visual interface without directly monitoring the brain’s cognitive processes. Evalu-

ations of basic tasks may not generalize to complex tasks using the same visual forms

(i.e. bar graphs and pie charts [34, 147, 154]), and psychology research suggests that

evaluating performance without workload may lead to incorrect conclusions about

the cognitive e�ciency of an interface [16, 81, 119, 179]. Finally, cognitive state can

change even as performance remains stable, meaning that performance metrics may

not always accurately reflect cognitive processes [41, 170].

As a result, there has been a renewed interest in objective methods to eval-

uate cognitive processes during interaction with a visual interface [4, 136]. While

previous fNIRS experiments in HC have studied cognitive state at various stages of

interaction [7, 61, 73, 74, 150, 153], these experiments largely omit a critical com-

ponent of interface design: How do di↵erent visual designs and interfaces a↵ect the

user’s ability to perform visual judgment at a cognitive level?

Finally, brain sensing opens the potential for systems that personalize infor-

mation delivery to the user. Research increasingly suggests that users may di↵er in

the way that they interact with information visualization [64, 184]. If a system is

able to monitor user state during interaction, it may be possible to either provide

the user with support on the fly or personalize future visual forms to better fit their

cognitive profile.
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However, there are concerns as to whether fNIRS may be capable of moni-

toring brain activity in visualization tasks since the physiological parameters which

fNIRS monitors is slow-moving in comparison to the massively-paralleled processes

employed by the brain’s visual system. In addition, tasks that leverage the percep-

tual system may not induce measurable activity in the prefrontal cortex (PFC).

In this work, we test the viability of using fNIRS to observe how visual

design modifies brain activity in complex tasks. We conducted three experiments

to (a) examine how participants process bar graphs and pie charts di↵erently in

their brains, (b) determine the e�cacy of using fNIRS as a technique for evaluating

mental workload in visual tasks, and (c) classify visual tasks that are most suited

for using fNIRS in evaluation.

To investigate this, we employ a classical comparison in the field of visual-

ization - bar graphs and pie charts - and ask users to perform a di�cult task on

the information contained in those graphs. Based on our results, we make three

contributions:

• Our findings suggest that fNIRS can be used to monitor di↵erences

in brain activity that derive exclusively from visual design. We find

that levels of deoxygenated hemoglobin in the PFC di↵er during interaction

with bar graphs and pie charts. However, there are not categorical di↵erences

between the two graphs. Instead, changes in deoxygenated hemoglobin cor-

related with the type of display that participants believed was more di�cult.

In addition, participants reacted di↵erently to pie charts and bar graphs at a

cognitive level, but exhibited the same performance characteristics.

• We propose that the fNIRS signals we observed indicate the amount

of cognitive workload induced by interacting with a visual inter-

face. We conducted an experiment that compares brain activity observed in

bar graphs and pie charts with activity from a visuospatial n-back task - a

well-characterized task from the psychology literature for modifying load on

working memory. Our results are consistent with the existing fMRI literature
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and agree with participant response data (NASA-TLX), indicating that fNIRS

signals correlate with cognitive workload.

• We discuss the benefits of using fNIRS for evaluating visual design and conduct

an auxiliary study to identify the limits of using fNIRS in perceptually driven

tasks. We find that fNIRS can provide insight on the impact of visual

design during interaction with di�cult, analytical tasks, but is less

suited for simple, perceptual comparisons.

3.2 Background

3.2.1 Brain and Body Sensing in Visualization Evaluation

As Fairclough [47] points out in his seminal review, physiological sensing in HCI

has the advantage of having higher temporal fidelity in that it can access data at

any time. In contrast, post-hoc questionnaires or recordings of observable behaviors

represent discrete and sporadic events that reflect aggregated opinions about a whole

experience.

While the field of HCI has seen an increased acceptance of physiological sens-

ing in evaluation, to date, this push has not translated to the evaluation of visual

interfaces and visual form. Historically, recording behavioral metrics or administer-

ing questionnaires have been used to evaluate visual design. However, Riche [136]

notes that the exploratory nature of tasks in infovis systems, coupled with the “the

di�culty to decompose [them] into low-level and more easily measured actions”

makes analysis problematic. To overcome some of these obstacles, Riche proposes

the use of physiological measures to evaluate visual interfaces.

Unfortunately, to our knowledge, there have been only two significant at-

tempts to explore this space. Investigating the impact of visual variables on heart

rate, galvanic skin response (GSR), and respiratory rate, Causse and Hurter found

that interactions with text v. angle-based visual forms elicited di↵erent signals with

GSR [25]. Few other significant interactions were observed. Work by Anderson et
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al. is the most promising example of using physiological signals to evaluate visual

interfaces [4]. They used electroecephalography (EEG) to determine that the canon-

ical box plot requires less extraneous load (i.e. the additional load placed on users

by the design of a task) than various other box plot designs [4].

However, there are notable caveats to the use of EEG. While EEG has a high

temporal resolution, it also has a low spatial resolution, meaning that the origin of

recorded electrical activity is di�cult to locate. Additionally, EEG has traditionally

been considered to be extremely sensitive to movement artifacts, although recent

developments have lessened this issue [134].

As a result, we explore the use of fNIRS as an alternative brain sensing

technology. Recall from Chapter 2 that fNIRS is quick to set up and more tolerant

of user movement than other brain sensing techniques such as fMRI or EEG - a

critical feature for ecologically valid evaluation [152, 157].

Figure 3.1: An example bar graph and pie charts from Cleveland and McGill’s
comparison task. Participants were asked to make a percentage estimation of the
smaller section, marked by a red dot, with the larger section, indicated by a black
dot.

3.2.2 Pie Charts and Bar Graphs

We chose the visualization of bar graphs and pie charts as a suitable testbed for

monitoring the user’s cognitive processes because it is a familiar, well-studied com-

parison in the field of information visualization. In this section, we briefly outline

the body of research that studies interaction with bar graphs and pie charts.

In Cleveland and McGill’s ranking of visual variables, participants were pre-
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sented with either a bar graph or pie chart (Figure 3.1) and asked to estimate the

proportion percentage of a smaller value in the graph to a larger value [34]. Their re-

sults indicated that position judgments (bar graphs) facilitated more accurate visual

comparisons than angle judgments (pie charts).

However, Simkin and Hastie found that pie charts and bar graphs performed

equally well in part-to-whole comparisons [147]. Spence and Lewandowsky demon-

strated that pie charts perform reasonably well in a direct comparison with other

basic visual forms [154]. In more complex tasks - when comparisons consist of com-

bined proportions (A+B v. C+D) - pie charts can outperform bar graphs [156]. For

a more extensive history of the pie chart, see Spence’s article “No Humble Pie: The

Origins and Usage of a Statistical Chart” [155].

Recently, there have been a handful of studies that utilize Cleveland and

McGill’s comparison as a baseline to investigate various dimensions of interaction.

Heer et al. replicated Cleveland and McGill’s experiment using Mechanical Turk,

demonstrating that “crowd sourcing” is a viable mechanism for graphical perception

experiments [70]. Using pie charts and bar graphs, Hullman et al. showed that social

factors can influence quantitative judgments [83]. For example, showing a user a

histogram of previous responses to a visual comparison would dramatically skew

the user’s own judgment. Finally, Wigdor et al. explored the impact of distortion

on angle and position judgments in tabletop displays. They found that varying the

orientation of the display surface altered visual comparisons [171].

Despite the sizable body of research that has investigated bar graphs and

pie charts, these studies also indicate that as the task or environment change, per-

formance di↵erences between the two forms become less clear. Therefore, we find

this familiar comparison to be a su�cient baseline for objectively exploring users’

cognitive processes with fNIRS.
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3.3 Research Goals

Our primary goal in this work was to investigate the viability of using fNIRS to

evaluate visual design by having participants perform the same complex task on

both bar graphs and pie charts. We theorized that in a complex task, bar graphs

and pie charts would support the cognitive processes of the user di↵erently. Thus,

our principal hypothesis was as follows:

• Hypothesis: We will observe di↵erent brain signals during interaction with bar

graphs and pie charts, indicating that bar graphs are easier to use.

Depending on the outcome of our experiments, our secondary goal was to

further specify the use of fNIRS in visualization research. First, we compared fNIRS

signals from participants in a well-established psychology task (n-back task) to those

observed in bar graphs and pie charts. We combined those observations with pre-

vious fMRI literature and participant survey responses to surmise the underlying

cognitive processes associated with our fNIRS signal. Additionally, we performed an

auxiliary study using simple comparisons on bar graphs and pie charts to identify

a lower bound for using fNIRS in visualization research. We present these results

below, after the main experiment.

In the following sections, we outline the methodology used for our bar graph

v. pie chart experiment, discuss the results of that experiment, and finally, generalize

our study to visualization research.

3.4 Methods

Although originally inspired by Cleveland and McGill’s classical position v. angle

experiment, we modified the complexity of their task in order to reconstruct the

memory-intensive, analytical reasoning that is performed on high-performance visual

interfaces. For that reason, we modeled our task loosely after the n-back task, a well-

characterized psychology task that is meant to increase load on working memory.
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Figure 3.2: In our modified comparison task, participants compare a slice in the
current pie chart to a slice from the previously seen pie chart.

In this task, participants were presented a series of slides, each displaying

either a bar graph or pie chart, to view sequentially. They were instructed to

estimate the size di↵erence to the nearest ten percent of a smaller section of the

graph (marked by a red dot) in the current slide to a larger section (marked by a

black dot) in the previous slide. Estimates were entered using a single keystroke

on the keyboard (‘1’ for 10 percent, ‘2’ for 20 percent, etc). Figure 3.2 shows an

example of three slides using the pie chart condition.

Each trial lasted 40.7 seconds and consisted of 11 slides (or 10 comparisons

with the previous slide), with each slide being presented for 3.7 seconds. Participants

viewed 8 trials where the task depended on bar graphs and 8 trials where the task

depended on pie charts. Trials were shown in random order.

To construct the graphs, 88 datasets (8 trials x 11 slides) were randomly

generated at the time of the experiment using the same constraints as those out-

lined in Cleveland and McGill’s classical angle v. position experiment. Accordingly,

the same datasets were used for both bar graphs and pie charts. Comparisons were

chosen at run-time by randomly selecting one of the largest two graph elements in

the current slide and one of the smallest three elements in the next slide. This final
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constraint was necessary to guarantee that the two marked segments of each graph

would not overlap and that percentage estimates would not exceed 100%.

3.4.1 Measures

3.4.1.1 Questionnaire: NASA TLX

We used an unweighted NASA-TLX questionnaire [109], a subjective rating that has

been successfully used to capture workload since the 1980s [68]. The questionnaire

collects six components of workload - mental demand, physical demand, temporal

demand, performance, e↵ort, and frustration. In total, we collected two surveys

reflecting the two conditions - bar graphs and pie charts. We focus primarily on the

questionnaire’s mental demand dimension.

3.4.1.2 Brain Sensing: fNIRS Signal Analysis

We used a multichannel frequency domain OxyplexTS from ISS Inc. (Champaign,

IL) for fNIRS data acquisition. Two fNIRS probes were placed on the forehead in

order to measure the two hemispheres of the PFC. The source-detector distances

were 1.5, 2, 2.5, and 3cm. Each distance measures a di↵erence depth in the cor-

tex. Each source emits two light wavelengths (690 nm and 830 nm) to detect and

di↵erentiate between oxygenated and deoxygenated hemoglobin. The sampling rate

was 6.25Hz. For each of the two fNIRS probes, we selected the fNIRS measurement

channels with source-detector distances of 3cm, as the light from these channels is

expected to probe deepest in the brain tissue, while the closer channels are more

likely to pick up systemic e↵ects and noise.

To remove motion artifacts and optical changes due to respiration and heart

beat we applied a folding average filter using a non-recursive time-domain band

pass filter, keeping frequencies between 0.01Hz and 0.5Hz. The filtered raw data

was then transformed into oxygenated hemoglobin and deoxygenated hemoglobin
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concentrations using the modified Beer-Lambert Law [26]:

�A = "⇥�c⇥ d⇥ B (3.1)

where �A is the change in attenuation of light, " is the molar absorption

coe�cient of the absorbing molecules, �c is the change in the concentration of the

absorbing molecules, d is the optical pathlength (i.e., the distance the light travels),

and B is the di↵erential pathlength factor. The attenuation of light is measured by

how much light is absorbed by oxygenated and deoxygenated hemoglobin (which are

the main absorbers of near infrared light at these wavelengths). As the attenuation

of light is related to the levels of hemoglobin, given �A, we can derive the changes

in the levels of oxygenated and deoxygenated hemoglobin [26]. Finally, to remove

noise artifacts, we smoothed the data by fitting it to a polynomial of degree 3 and

applied a low-pass elliptical filter [153].

3.4.1.3 Performance: Speed and Accuracy

We logged all key-strokes and response times. We defined response time as the num-

ber of milliseconds from a graph’s appearance to the final keystroke (user judgment)

before the next graph. For accuracy, we used Cleveland and McGill’s log absolute

error measures of accuracy [34]:

error = log2(|judged percent� true percent|+ .125) (3.2)

3.4.2 Experimental Design

16 participants took part in the study (7 male, 9 female). Participants had a mean

age of 20 years (SD 2.4) and were incentivized $10 for participation. The study used

a within-subjects design. All participants completed a fifteen minute bar graph v.

pie chart task in which the independent variable was the data visualization tech-

nique: bar graphs, pie charts. Participants also completed a fifteen minute visu-

ospatial n-back task in which the independent variable was the number of slides
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the participant needed to remember at once: 1-back, 3-back (we discuss the results

of this experiment in our investigation of fNIRS signals and workload). At the

conclusion of each section, participants completed an unweighted NASA-TLX ques-

tionnaire for each condition. The order of sessions (n-back, angle vs. position) was

counterbalanced and the order of conditions (1-back vs. 3-back, bar graph vs. pie

chart) in each session was randomized. The study was conducted in a lab setting,

with stimuli presented on a single monitor under controlled lighting conditions.

3.5 Results

For the purpose of analyzing the fNIRS signal, we calculated the mean change in

deoxygenated hemoglobin (�Hb) across the duration of each trial (omitting the first

10 seconds1) for each participant as shown in equation (3.3):

�Hb =

Pn
t=0(Hbt �Hb0)

n
(3.3)

where n is the number of time-points, Hb0 is the level of deoxygenated

hemoglobin at the first recorded point (time zero), and Hb
t

is the level of de-

oxygenated hemoglobin at time-point t of a trial. The change in deoxygenated

hemoglobin (�Hb) is calculated by subtracting Hb0 from the level of deoxygenated

hemoglobin at each time-point t. This is one of many techniques that have been

used in the fNIRS literature to evaluate changes in oxygenated and deoxygenated

hemoglobin [7]. While there may be boundary cases in which this measure is not

sensitive to di↵erences between signals, in this case, it captures the clear distinction

between conditions.

3.5.1 fNIRS Signal: Bar Graphs v. Pie Charts

Addressing our initial hypothesis, we found no significant di↵erences in deoxy-

genated hemoglobin between the bar graph (M = �.0292, SD = .0471) and pie

1Omitting the first 10 seconds of the trial is due to the delayed physiological response of sending
oxygen to the brain
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chart (M = �.0249, SD = .0679) conditions (t(15) = �.280, p = .784). Contrary to

our initial belief, these results indicate that there were no categorical di↵erences in

brain activity between the two visual forms. However, during the examination of

data from NASA-TLX questionnaires, we encountered an interesting trend. In this

section, we discuss and analyze this.

3.5.2 NASA-TLX Results

Isolating the mental demand dimension of the NASA-TLX survey, we found that

7 out of 16 participants believed pie charts to be more mentally demanding than

bar graphs while an additional 7 participants expressed that bar graphs were more

mentally demanding than pie charts (the remaining 2 participants found the graphs

to require equal amounts of mental e↵ort). These responses were largely unexpected,

as our hypothesis indicated that we would likely find a categorical di↵erence between

bar graphs and pie charts. For the sake of clarity, those who thought pie charts to

be more mentally challenging will be referred to as pie high demand and those

who thought bar graphs to be more mentally demanding will be referred to as bar

high demand.

3.5.3 fNIRS Signal: Bar High Demand v. Pie High Demand

We found that the levels of deoxygenated hemoglobin (at the 3cm source-detector

distance) exhibited by participants who found bar graphs more mentally demanding

were the reverse of those participants who found pie charts more mentally demand-

ing.

Figure 3.3 shows that in the bar high demand group, we observed a decrease

in deoxygenated hemoglobin in both the left and right hemisphere during tasks

completed on bar graphs. In comparison, these same interactions induced a slight

increase in deoxygenated hemoglobin in the pie high demand group.

Thus, we performed an ANOVA on the mean change in deoxygenated hemoglobin

using a 2 (task) x 2 (group) split plot design. The ANOVA revealed a signif-

icant di↵erence between groups (F (1, 12) = 9.95, p < .01), as well as a signifi-
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Figure 3.4: The mean change in deoxygenated hemoglobin for each graph shows
that the visual design that partipants found to be more di�cult resulted in larger
decreases in deoxygened hemoglobin.

cant interaction between groups (pie high demand and bar high demand) and task

(F (1, 12) = 16.49, p < .01). This finding shows that participants in the pie high de-

mand group and the bar high demand group showed significantly di↵erent patterns

of deoxygenated hemoglobin while performing the two tasks (Figure 3.4).

While the mean provides a suitable metric for analysis, it can miss some

trends in time-series data. Specifically, Figure 3.4 suggests that both groups recorded

similar changes in deoxygenated hemoglobin while interacting with bar graphs. How-

ever, Figure 3.3 shows that the fNIRS signal was trending in opposite directions.

Finally, it’s worth noting that the decreases in deoxy-Hb we observed oc-

curred at levels that are lower than those typically observed in fNIRS studies (less

than 0.1). However, we observed them consistently across participants. Coupled

with our experimental design, which used a random ordering of trials (8 bar graph

vs. 8 pie chart) and a counterbalanced ordering of sessions (n-back vs. graph), we

find these di↵erences to be lend insight into participants’ interaction with graphs.

For a more detailed view, in Appendix A we show the fNIRS plots from all source-

detector pairs.
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3.5.4 Performance: Bar High Demand v. Pie High Demand

In light of these group di↵erences, we performed another analysis on response times

by running a similar ANOVA on mean response time using a 2 (task) x 2 (group)

split plot design. After ensuring that the data fit a normal distribution, we found

no significant interaction between groups and tasks (F (1, 12) = 2.425, p = .145).

Similarly, an ANOVA on log error as shown in equation (3.2) found no significant

di↵erence in the interaction between group and task (F (1, 12) = .51, p = .4907).

We display a box-plot of log error and response time for each of the two groups in

Figure 3.5.

Figure 3.5: Despite a clear separation in brain activity between the bar high demand
group and the pie high demand group, we observe very little di↵erence in response
time and error. The whiskers represent the max/min values, excluding outliers.
Outliers are assigned by being more/less than 1.5 times the value of the upper/lower
quartiles.

These results suggest that although there were significant di↵erences in brain

activity between bar graphs and pie charts, there were no observable di↵erences

in performance, either categorically (bar graphs v. pie charts) or between group

(bar high demand v. pie high demand). This is a very di↵erent result from those
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observed by Cleveland and McGill [34], in which position judgments (bar graphs)

were found to significantly outperform angle judgments (pie charts). However, given

the complex nature of the task, it is not surprising that performance corresponds

more closely to findings from Spence and Lewandowsky that pie charts can perform

as well, or better than bar graphs in di�cult tasks [154, 156].

3.6 Discussion of Bar Graphs and Pie Charts

Our results show that changes in deoxygenated hemoglobin during the use of bar

graphs in a complex task are statistically di↵erent from those observed during the

use of pie charts. However, this distinction was not categorical. Instead, brain

activity depended on the individual and correlated with reports of mental demand

in a NASA-TLX questionnaire. These di↵erences between participants may call into

question the conventional wisdom to always use bar graphs instead of pie charts.

3.6.1 Di↵erences in Perceived Mental Demand

In the background, we outlined studies that used performance metrics of speed

and accuracy to compare the use of bar graphs and pie charts. We expected that

self-reports of mental demand would roughly resemble performance trends, and fol-

lowing previous research, one visual form would be categorically favored over the

other. However, we discovered that 14 out of 16 participants found one chart to

be more mentally demanding than the other. Therefore, we reject our initial

hypothesis that brain signals would indicate that bar graphs are easier

to use for most people.

Subjectively, there was no indication that either bar graphs or pie charts were

superior across all participants on this particular task. 7 participants reported pie

charts to be more mentally demanding and 7 participants reported bar graphs to be

more mentally demanding (the final 2 reported no noticeable di↵erence). Although

we did not investigate the underlying cause of this observation, we suspect that

this is due to either di↵erences in cognitive traits (e.g. spatial ability), strategies
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employed to complete the task, or previous experience with bar graphs and pie

charts.

3.6.2 Survey Responses and fNIRS Signals

While surveys can be found to be a↵ected by bias or an inability to accurately

externalize cognitive state, we found a surprising correlation between fNIRS read-

ings and mental demand reports on NASA-TLX. The graph that participants

reported to be more mentally demanding recorded decreased levels of

deoxygenated hemoglobin, validating the use of fNIRS to procure mean-

ingful information about cognitive state. Additionally, the results indicate

that participants were generally well-tuned to their own cognitive processes and

accurately externalized their cognitive load. We discuss the implications of this

observation in the following section.

3.6.3 Indistinguishable Performance Between Graphs

A comparison of NASA-TLX responses and speed and accuracy demonstrates a dis-

sociation between performance and cognitive state during the use of bar graphs and

pie charts. Performance measures on both graphs were statistically indistinguish-

able from each other, regardless of whether participants found one graph to be more

mentally demanding. However both questionnaire responses and fNIRS readings

showed that the two designs influenced brain activity di↵erently.

Given these results, it is possible that participants were exerting di↵erent

amounts of mental e↵ort on a given graph to achieve the same levels of performance.

Furthermore, this observation suggests that evaluating performance metrics without

considering cognitive state might have led to di↵erent conclusions about the e�cacy

of bar graphs and pie charts in this experiment. In the next section, we investigate

whether the fNIRS signals we observed reflect levels of mental demand.
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3.7 N-Back Task: Detecting Mental Workload

During the course of this chapter, we have been ambiguous about assigning a specific

cognitive state to our fNIRS readings. The brain is extremely complex and it is

dangerous to make unsubstantiated claims about functionality. However, for fNIRS

to be a useful tool in the evaluation of visual design, there also needs to be an

understanding of what cognitive processes fNIRS signals may represent. In our

experiment, we have reason to believe that the signals we recorded correlate with

levels of mental demand. We share three pieces of evidence that support this claim:

1. fMRI studies have suggested that decreases in deoxygenated hemoglobin are

indicative of increased brain activity [44]. Active regions of the brain require

more oxygen to function. Thus, as levels of oxygenated hemoglobin increase

to meet these demands, levels of deoxygenated hemoglobin decrease.

Figure 3.6: In the visuospatial n-back task, participants view a series of slides and
respond whether the current pattern matches the pattern from n slides ago. We
show positive answers for both the 1-back and 3-back conditions.

2. Self-reports of mental demand from the NASA-TLX results during the bar-

graph and pie chart task correlated with levels of deoxygenated hemoglobin.

Graphs that were reported to require more mental e↵ort were accompanied by

lower levels of deoxygenated hemoglobin.

3. We ran each participant on a well-characterized working memory task from

the psychology literature - the visuospatial n-back test - and found that brain

activity in the more mentally demanding graph mirrored activity in the more
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demanding n-back condition. We discuss the details of this experiment in the

next section.

3.7.1 Methods

In the visuospatial n-back task, participants were shown a series of slides, each with

a distinct visual pattern, and asked whether the current slide matched the pattern

from either 1 slide previously (1-back) or 3 slides previous to the current slide (3-

back). Thus, the 3-back task strains the participant’s visuospatial working memory

by forcing him or her to constantly remember (and update) 3 images at once. By

comparison, the 1-back task is relatively simple, requiring participants to remember

only visual pattern from the previous slide.

Figure 3.6 shows an example of 6 slides from the n-back test. For each

slide, the visual pattern remained on the screen for 300ms followed by a blank

response screen for 1550ms in which participants answered ‘yes’ or ‘no’ using a

single keystroke. Participants were given 8 trials of each condition with each trial

consisting of 22 slides. Each trial lasted for 40.7 seconds and trials were separated

by 12-second rest periods. This experimental timing mirrors the timing in the bar

graphs/pie charts task, enabling us to compare equal slices of time for the fNIRS

data.

3.7.2 Results

Looking at the results, Figure 3.7 shows that there is a clear distinction between

1-back (blue) and 3-back (black) trials. These results are expected and resemble

previous studies of the n-back task [117]. Additionally, the 3-back task induced lower

levels of deoxygenated hemoglobin, agreeing with other observations of deoxygenated

hemoglobin from the fMRI literature.

When placed side-by-side with the fNIRS readings from the bar graph/pie

chart task, we notice that signals from the more mentally demanding 3-back resemble

those from the graph that participants identified as requiring more mental e↵ort

(Figure 3.8). Similarly, the signal recorded from the less-demanding 1-back task
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Figure 3.7: The mean fNIRS signal across all 16 participants in the Baseline Task.
We see a clear separation between the 1-back and 3-back conditions participants.
The more demanding 3-back condition mirrors signals from the graph design that
participants believed was more mentally demanding.
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group - participants who found bar graphs to be more mentally demanding than pie
charts.
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resembles those observed in the graph that participants identified as requiring less

mental e↵ort (Figure 3.8).

Given these three legs of evidence - previous observations noted in fMRI

studies, correlations with survey data, and correlations with signals observed in the

n-back task - we feel confident that the fNIRS signals observed during use with bar

graphs and pie charts correlate with mental demand in the brain. Furthermore,

these results suggest that fNIRS can be used to monitor mental demand in other

visual interfaces.

3.8 fNIRS: Considerations for Evaluation

We have shown that we can successfully di↵erentiate fNIRS signals during the inter-

action of bar graphs and pie charts in a complex task and that these signals likely

indicate workload in the brain. In this section, we synthesize our results, previous

literature, and an auxiliary study to explore when fNIRS is an appropriate tool for

the evaluation of visual design.

3.8.1 Are Surveys Good Enough?

Cognitive state is often overlooked in evaluation, partially because it is di�cult

or cumbersome to quantify. We found that a simple survey agreed with fNIRS

readings and accurately captured the participant’s mental workload. This is good

news for simple evaluations of mental demand. Questionnaires do not require an

unreasonable time investment, and the strength of our observations were based on

a single dimension in the NASA-TLX questionnaire. If more objective measures are

not available, questionnaires can provide insight into a user’s cognitive state.

Nonetheless, questionnaires can be problematic as they depend on the as-

sumption that people can sense and externalize their subjective feelings without

being biased by external influences [42, 118]. In comparison, brain sensing pro-

vides an objective snapshot of cognitive state and short-cuts the rating process by

directly measuring the brain during interaction. As opposed to post-hoc question-
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naires, neurophysiological measures require no additional e↵ort or time from the

participant. Furthermore, physiological measures can be used in more complex or

time-consuming tasks for fine-grained observations of cognitive processes. Instead of

a single workload metric for the entirety of a task, physiological measures can pro-

vide time-sensitive evaluations, potentially identifying periods of mental demand.

We recommend that visualization researchers carefully weigh the nature of their

comparison to select an appropriate technique.

3.8.2 Lending Insight to Complex, Analytical Tasks

Given the results of our study, we suggest that fNIRS may be well-suited for the

analysis of complex interactions that are common in visual analytic systems. In this

section, we highlight three other factors that point to fNIRS being well-suited for

analytical tasks:

• The extended timeline of complex tasks mitigates the slow temporal resolution

of fNIRS, which occurs because of the delayed (5-7 seconds) physiological

response to brain activity.

• The PFC - the region of the brain that fNIRS most easily measures - has been

posited to “integrate the outcomes of two or more separate cognitive operations

in the pursuit of a higher behavioural goal” [135]. These higher-level cognitive

functions typically drive analytical thought and include (but are not limited

to) selection, comparison, the organization of material before encoding, task

switching, holding spatial information ‘online’, and introspective evaluation of

internal mental states [135, 139].

• The successful examples of applying fNIRS measures to interface evaluation

have traditionally leveraged mentally demanding scenarios such as multi-tasking

the navigation of multiple robots [150], increasing the di�culty of a video

game [60], or reversing the steering mechanism in a driving task [73].
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Given these factors, we believe that fNIRS will provide the most insight to

visual interfaces that require complex, analytical thought. However, fNIRS is not

without its limitations; as we demonstrate in the next section, short, low-level tasks

are di�cult to detect using fNIRS.

3.8.3 Perceptually-Driven Tasks are Di�cult to Monitor

To explore the limits of using fNIRS to evaluate visual interfaces, we constructed an

experiment that is closer to Cleveland & McGill’s original comparison of position v.

angle, which is based on more perceptually-driven interactions. Whereas trials in our

previous experiment required participants to make percentage comparisons in graphs

across slides, a trial in this modification consisted of 4 percentage comparisons (3.75

seconds per comparison) on the same graph and participants interacted with 12

trials of bar graphs and 12 trials of pie charts. Thus, for each trial, four small pieces

on a graph were sequentially compared to the largest piece in the graph (Figure

3.9).

To compare the changes in deoxygenated hemoglobin with our previous

study, we ran an additional 8 participants and plotted the fNIRS signal using the

axis of the same scale as the complex task. Looking at Figure 3.10, we can see that

both pie charts and bar graphs caused very little activation in the PFC, with little

to no di↵erentiation between signals.

These results are not surprising. Quick visual and perceptual tasks are not

likely to be observed by fNIRS. Tasks that rely heavily on preattentive processing

use very little of the processing power of the PFC. Additionally, it takes a couple of

seconds to observe the hemodynamic response resulting from brain activity, and 5-7

seconds in total for the oxygen levels to peak in the brain. This means that we are

unlikely to observe quick and subtle interactions with a visualization. We therefore

recommend that fNIRS will lend the most insight during more complex analytical

interactions.
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Figure 3.9: Participants sequentially compared elements of a graph to the largest
element of the graph.

3.9 Findings

We have demonstrated that fNIRS is a viable technology for investigating the impact

of visual design on a person’s cognition processes. Using the classical comparison of

bar graphs and pie charts, we found that decreasing levels of deoxygenated hemoblo-

gin correlated with the visual form that participants found to be more mentally

demanding. We suggest that these changes in deoxygenated hemoglobin, detected

in the PFC, indicate the amount of mental e↵ort associated with the visual design.

As we demonstrated in our study, these di↵erences in workload are not necessarily

reflected in traditional performance metrics.

Exploring the use of fNIRS in visualization research, we suggested that fNIRS

is well suited for the evaluation of visual interfaces that support analytical reasoning

tasks. This advantage should be particularly appealing for interface designers, as

the complexity of visual analytic systems often make it di�cult to apply traditional

performance metrics. Additionally, the resistance of fNIRS sensors to movement

artifacts allows users to interact naturally with an interface, resulting in more eco-

logically sound evaluations.

Lowering the barrier to monitor cognitive state increases the opportunity to

develop adaptive applications that specially calibrate the display of information to
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Figure 3.10: The mean fNIRS signal across all 8 participants in a simple bar graphs
and pie charts task. The lack of activation shows that fNIRS may be less suited for
simple, perceptual comparisons.

the individual. Recently, Solovey et. al [150] used fNIRS to determine when the

user should be interrupted with new information and built a system that adapted

the level of automated assistance in a virtual robot navigation task. While recent

work in visualization has begun to pay careful consideration to the impact of a

user’s personality and cognitive traits, using tools like fNIRS, we hope that visual

interfaces can be designed to also be attentive to the user’s current cognitive state.

The strengths of fNIRS are appealing, however, there are also limitations.

While we identified periods of high or low workload, more specific mappings of fNIRS

signals to cognitive states are needed to promote fine-grained evaluations of visual

interfaces. Additionally, we found that fNIRS is less suited for quick visual tasks

that are driven by the user’s perceptual system. Despite these drawbacks, fNIRS

provides a suite of benefits that are distinctive and complimentary to those o↵ered

by other physiological sensors. With the decreasing cost of brain sensing technology

and its increasing use in HCI, we believe that the door has finally opened to directly

explore the impact of visual design on cognitive state.
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3.10 Towards Understanding Individual Cognitive and

Mixed Initiative Systems

In this chapter, we discovered that the neural ‘footprint’ of interaction between bar

graphs and pie charts di↵ered between people. This result suggests that the best

visual representation for one person may be di↵erent than that for another person.

Recent work in visualization has made similar suggestions [90, 162, 184]. However,

to move towards a scenario where the computer can maximize engagement (or un-

derstanding) by providing a personalized visualization, we need to obtain a better of

understanding of the cognitive factors that result in performance di↵erences. In this

section, I use previous work in visualization to motivate a framework for considering

and investigating the impact of individual cognitive di↵erences.

3.10.1 States, Traits, And Experience/Bias

In recent years, strides have been made toward understanding the impact of indi-

vidual di↵erences on performance when interacting with visual analytic systems.

Research has shown that factors such as personality [64, 184], spatial ability [27],

biases [105, 185, 186] and emotional state [6, 52, 91, 132, 145, 138] impact a user’s

performance. Though progress is undeniable, a common limitation is that every

cognitive factor that a↵ects visualization performance is not considered or properly

controlled. For instance, studies that focus on personality factors alone do not con-

sider how di↵erences in working memory, perceptual ability, and previous experience

can also a↵ect visualization performance. These as well as numerous situational dif-

ferences make it di�cult to not only design systems, but performing evaluations

that are generalizable and replicable.

As stated by Yi in his position statement in 2010, the visualization com-

munity has yet to employ a comprehensive and standardized model for measuring

individual di↵erences such that researchers can better understand how factors in

individual di↵erences interact with each other and with existing evaluation tech-

niques [180]. While one conceptual framework cannot solve all the problems de-
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scribed above, we believe that individual di↵erences can be categorized into three

major dimensions: cognitive traits, cognitive states, and experience/bias.

Cognitive traits are user characteristics that remain constant during inter-

action with a visual analytic system. Factors such as personality, spatial visual-

ization ability, and perceptual speed are all examples of cognitive traits. These

have been shown to correlate with a user’s ability to interact with a visualiza-

tion [28, 35, 64, 164, 184] and can be generalized to predict the behavioral patterns

of users with di↵erent cognitive profiles.

Cognitive states, on the other hand, are the aspects of the user that may

change during interaction and include situational and emotional states, among oth-

ers. Research has shown that a user’s performance can be significantly altered by

changes in their emotional state [6, 52, 91, 132, 138, 145], and the importance of com-

bining workload with performance metrics has been noted for decades [81, 119, 179].

Although cognitive states are di�cult to measure because of their volatility, they

provide important contextual information about the factors a↵ecting user perfor-

mance that can not be described through cognitive traits alone.

Cognitive states and traits can describe a significant portion of a user’s cog-

nitive process but they are not comprehensive; experience and biases can also a↵ect

cognition. Intuitively, we think of experience and bias separately, but they both de-

scribe learned experiences that can a↵ect behaviour when familiar problems arise,

and are therefore not orthogonal. Although there has been little work about the im-

pact of experience/bias on interaction with visual analytics systems [5, 32, 45, 186],

previous studies have shown that learned behavior such as confirmation bias can

significantly a↵ect performance and decision-making [72].

3.10.2 Towards Adaptive Visualization Systems

One important advantage of understanding individual users’ cognitive states, traits,

and biases as a cohesive structure is that this opens up the possibility of developing

adaptive, mixed-initiative visualization systems [161]. As noted by Thomas and

Cook in Illuminating the Path [161], an important direction in advancing visual
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analytics research is the development of an automated, computational system that

can assist a user in performing analytical tasks. However, with few exceptions, most

visualization systems today are designed in a “one-size-fits-all” fashion without the

ability to adapt to di↵erent users’ analytical needs into the design.

There is mounting evidence that successful adaptive systems can significantly

improve a user’s ability in performing complex tasks. Ziemkiewicz et al. [184]

demonstrate that the impact of locus of control (LOC) on visualization can be sig-

nificant. When the user is given a hierarchical visualization that correlates with

the user’s LOC, a user’s performance can be improved by up to 52% in task com-

pletion time, and 28% in accuracy. Returning to our previous experiment, we used

fNIRS to measure the cognitive state of users as they interacted with an information

visualization. However, during this process we identified di↵erences in the fNIRS

signal between users. While the reason behind these di↵erences is unknown, it is

possible that we could use this information to present an optimal chart and reduce

the cognitive load.

It is clear that adaptive systems o↵er new possibilities for visualization re-

search and development, but more work is necessary to model how and when a

system should adapt to a user’s needs. As noted earlier, only emphasizing one or

two of the three proposed dimensions can lead to a system incorrectly assessing the

user’s analysis process and provide the wrong adaption. By examining all three

dimensions in a cohesive fashion, it becomes possible for a system to predict a user’s

performance and realize the potentials of an adaptive, mixed-initiative system as

proposed by Thomas and Cook. In the the next chapter, we move away from vi-

sualization to give an example of how fNIRS can be used in an adaptive system to

help optimize which information is presented to the user.
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Chapter 4

Which: Investigation of fNIRS

Brain Sensing as Input to

Information Filtering Systems

In the previous chapter, we used fNIRS to detect signals that were dependent on the

visual display of information. While this demonstrated the capability of fNIRS to

be sensitive to how information is delivered to the user, we did not use the signal as

input to an adaptive system. In this chapter, I complete the biocybernetic loop and

show that fNIRS can be used as input to systems that modify which information

should be filtered or prioritized to the user [126]. Since this is one of the first fNIRS

systems that utilized a biocybernetic loop, it also serves as an initial exploration

(after [150]) of the use of fNIRS in a passive BCI.

4.1 Motivation

User attention is a scarce resource in modern computing. Mental resources are

often divided among disparate but concurrent streams of information. Twitter up-

dates, text messages, and emails, for example, draw the attention of a user and

pull cognition away from primary working tasks. In the wake of such pervasive dis-

tractions, research has shown that focusing on the wrong information or consuming
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information at the wrong moment can not only lead to a decrease in performance

during work, but negatively impact work satisfaction, and increase stress and anxi-

ety [10, 62, 100].

To address some of these problems, researchers have suggested that physio-

logical measures of workload or attention should be used to deliver information at

an opportune time. For example, Bailey et al. used pupil dilation as a measure of

workload for interruption [11], and Solovey et al. built an interactive system that

adapts robot automation to a human operator’s working memory load [150]. How-

ever, while physiological computing has been used to manipulate when information

is delivered to the user, very little work has focused on which information should be

delivered.

In this paper, we explore the use of fNIRS to classify preference judg-

ments and drive information filtering systems. Given recent neuroscience

literature, these parameters may allow the detection of preference judgments that

extend beyond emotional response by incorporating the reasoning processes of the

brain [14, 98]. Thus, if there is any correlation between fNIRS signals and preference

judgments, fNIRS could potentially augment current practices by being used as an

additional source of passive information to filtering systems.

However, there are significant challenges to the use of fNIRS in informa-

tion filtering systems. Previous fNIRS work has analyzed preference judgments

exclusively in o✏ine environments [98]. Additionally, signals that correlate with

preference are often subtle and may not translate to real world use cases. For these

reasons, a primary goal of this paper is to explore whether fNIRS preference mea-

sures can be used in a real-time environment.

To investigate the use of fNIRS in information filtering systems, we present

an automated recommendation system that suggests new movies based

on fNIRS measures alone. Using fNIRS to monitor the prefrontal cortex, our

system classifies brain data in real-time and iteratively updates a model of user

preference to recommend movies that are personalized to the individual user. To

evaluate our system, we ran a user study and found that fNIRS can contribute
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information to a recommendation environment by outperforming a no-input control

condition. In addition, we observed that the system’s model of user preference

improved the longer the user interacted with the device. Finally, we found that

recommendations were uniquely catered to the individual — 45% of the movies

each participant viewed were not recommended to any other participant — showing

that we were responding to individual preference and not overall popularity.

We suggest that this brain recommendation system acts as a proof-of-concept

for the use of fNIRS as input to information filtering systems. We argue that

eventually by integrating when information should be delivered along with which

information should be emphasized, brain-computer interfaces have the potential to

automatically provide users with the right information at the right moment.

4.1.1 Contributions

We make the following contributions:

• We show that fNIRS brain sensing can be used as input to infor-

mation filtering systems. We construct and evaluate a real-time movie

recommendation system that is driven by brain signals that correlate with

preference. We find that our system recommends higher-rated movies with

fNIRS input than without it, and that the underlying model of user prefer-

ence improves over time.

• We discuss the implications of using fNIRS measures in information

filtering systems. We suggest that brain sensing can someday augment cur-

rent recommendation systems, support the creation of recommendation sys-

tems in new domains, and unify recommendations across disparate information

sources.

4.2 Background and Related Work

In this work, we focus primarily on preference judgments as a key input to infor-

mation filtering. When integrated with information filtering algorithms, preference
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enables users to allocate attention through recommendations of personalized in-

formation or products [148]. Thus, preference helps determine which information

should be presented to the user. In addition, preference has been integrated into

applications such as personal search [160], prioritizing incoming text and voice mes-

sages [101], optimizing user interfaces [54], calculating interruption costs [75], and

guiding conceptual design [12], among others.

4.2.1 Measuring Preference: Explicit v. Implicit

In current information filtering systems, eliciting preference involves a tradeo↵ be-

tween accuracy and obtrusiveness. Explicit measures require users to record their

own preferences through a rating scale. While explicit ratings are generally accurate

representations of what the user prefers, they can act as attention-sinks by disturb-

ing normal behavior with an interface and introducing an introspective cognitive

step [114]. Additionally, responses depend on the assumption that users can sense

and externalize their subjective emotions, which may not be true [82].

Implicit measures predict user preference by observing the user during nat-

ural interactions with a system, and are based on viewing history, purchase history,

view time, or other behavioral measures [33, 53, 108, 122]. These ratings are essen-

tially elicited for free as they require no additional e↵ort on the part of the user.

However, implicit ratings are widely considered to be less accurate than explicit rat-

ings because they are based on prediction models that might not reflect the user’s

preference and can be a↵ected by a number of other variables [114]. For that reason,

new methods are often proposed to increase the accuracy of implicit ratings.

4.2.2 Physiological Measures of Preference

One approach to increase the e↵ectiveness of implicit measures is to incorporate

physiological sensors into preference prediction models. For example, combinations

of galvanic skin response (GSR), electromyograms (EMG), blood pressure, respira-

tion pattern, and electroencephalography (EEG) have been used to capture emo-

tional responses to videos [21, 92]. Following this work, there have been several
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attempts to use a↵ective signals as input to recommendation engines. For example,

Healey et al. [69] constructed an “A↵ective DJ” that dynamically constructed “en-

ergizing” or “relaxing” musical play lists. Similarly, Wu et al. [178] built a system

that recommends multimedia with similar emotional content. In each of these cases,

recommendations were grounded in emotional responses to content, and analysis of

each system was largely preliminary.

4.2.3 Preference Judgments in the Brain

While preference judgments and emotional reactions are often linked, previous work

indicates that there are two separate processing chains that combine to influence

preference judgments: emotion and reason [14]. This is because preference (and

specifically, economic decisions) may be based on various competing factors, such

as price, usefulness, branding, and availability. For example, viewing a high-end

sports car may elicit positive emotions, but a small, fuel-e�cient hybrid car may

elicit higher preference values.

The prefrontal cortex o↵ers information about preference judgments that

physiological sensors focusing on a↵ective state may not detect. We ground our

measures of preference in several studies that investigate the neural correlates of

preference using functional magnetic resonance imaging (fMRI) and positron emis-

sion tomography (PET). In a study by Deppe et al., fMRI showed increased ac-

tivation in the prefrontal cortex during economic decisions involving a preferred

brand name [43]. Paulus et al. recorded similar results in preference judgments of

drink categories [123] and McClure et al. compared activation in a blind Coke v.

Pepsi test, finding that neural responses in the PFC were consistent with behavior

[102]. Finally, in an example of emotional processing, Blood et al. found that in-

tensely pleasurable music experiences resulted in blood flow changes in the PFC in

comparison to a control music condition [17].

In this paper, we apply fNIRS to the detection of preference in the PFC,

observing similar physiological parameters to the fMRI studies noted above. Ad-

ditionally, we base our research on a recent study by Luu and Chau (extending
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Figure 4.1: From a pilot study, an example of the fNIRS signal from the right
hemisphere during periods of high preference and low preference. The plots show
the mean change in oxygenated hemoglobin during 8 trials of high preference and 8
trials of low preference.

Paulus et al. [123]), where fNIRS measures of the PFC were used to classify ex-

treme preferences for various beverage categories (e.g. milk, soda, water) [98]. In

a pilot study of our own, we confirmed the results of Luu and Chau by observing

di↵erent activation patterns in participants as they viewed pictures of digital music

devices that they liked and disliked (Figure 4.1).

4.2.4 Physiological Input to Adaptive Systems

A key feature of our brain-recommender system is that it monitors preference with-

out any specific e↵ort from the user. The system reads passive information about

users during natural interaction, and then adapts to their current state. While most

work in BCI has focused on active brain-computer communication, more recent

research has suggested the use of implicit neural parameters as input to adaptive

systems [39, 47, 61, 183]. For example, Kohlmorgen et al. used EEG to measure

mental workload in a multi-tasking driving scenario, where the secondary task would

be removed during periods of high-workload [93].

George and Lecuyer survey current passive BCI literature and categorize

them into four application areas: 1) adapting the level of automation, 2) implicit
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multimedia content tagging, 3) video games, and 4) error correction and detec-

tion [57]. Although our work is most closely related to implicit multimedia content

tagging, it extends that research by adding an adaptive element (new recommenda-

tions).

4.3 The Brain Recommender

In order to explore whether fNIRS can provide useful input to information filtering

systems, we constructed a movie recommender that is driven exclusively by fNIRS

signals and compared it to a system that does not include passive user input (a

no-recommendation environment). By controlling for behavioral indicators of pref-

erence, we test the ability of fNIRS to add information to recommendation systems

beyond traditional behavioral metrics of viewing time and history. Thus, if a brain-

driven recommender provides intelligent recommendations, we believe that implicit

fNIRS measurements can be used to augment current techniques.

• Hypothesis: Observing the brain with fNIRS will allow the brain recom-

mender system to construct a preference model of the user, suggesting movies

that cater to each user’s interests.

In the following sections, we discuss the technical details of our system, report

our experimental methods, and analyze the data from our experiment. Finally, we

discuss the implications of our results, outlining a vision for a information filtering

systems that are driven by the brain.

4.4 System Details

Constructing a fully-functional recommendation system based on brain input re-

quires the coordination of a number of technological pieces. To provide a technical

overview, we refer to Figure 4.2 and briefly discuss the flow of information in our

system.
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First, light sensing data is sent from our fNIRS data acquisition software to

an analysis program built in our lab, where the signal is filtered to remove noise and

movement artifacts. There, we partition the fNIRS data into segments of identical

length to training examples we provided during an earlier training period. These

segments are sent to Weka, an open-source machine learning library, where we clas-

sify the fNIRS signal based on previous examples [66]. This classification is sent

to our Java application that holds the movie and rating database and serves as the

backbone of our recommendation model. The application updates the database and

recommendation model with new user information, and searches for the top recom-

mended movie given all other previous data about the user. Finally, the selected

recommendation is sent to a browser that navigates to the movie’s corresponding

IMDB page.

Figure 4.2: Basic architecture of the real-time classification system: Raw fNIRS data
is filtered before being classified by a support vector machine (SVM). This preference
classification updates our movie database about the user, and after refreshing our
recommendation model, we show the top recommended movie.

4.4.1 Measuring and Filtering the fNIRS Signal

We used a multichannel frequency domain OxiplexTX from ISS Inc. (Champaign,

IL) for data acquisition. Similar to the previous chapter, two fNIRS probes were

placed on the forehead in order to measure the two hemispheres of the anterior

prefrontal cortex. The source-detector distances were 1.5, 2, 2.5, and 3 cm. Each

distance measures a di↵erence depth in the cortex. Each source emits two light
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wavelengths (690 nm and 830 nm) to detect and di↵erentiate between oxygenated

and deoxygenated hemoglobin. The sampling rate was 6.25 Hz.

4.4.1.1 Filtering

In order to remove noise that might be the result of user movement, respiration,

or heart beats, we apply filtering techniques described by Solovey et al. in their

adaptive system that also used fNIRS input [150]. First, we used an elliptic low

pass filter with a cuto↵ frequency of 0.025 Hz, stoppage frequency of 0.03 Hz, max

ripple of 3 dB and a stop band attenuation of 50 dB. Next, we used a z-score to

normalize the data in each information channel. Finally, for each training example,

we calculated the signal change of each time point from the first time point in the

example.

4.4.2 Building the fNIRS Classifier

Once each of the filtering steps was completed, we built a new preference model

for each participant based on the training protocol we describe in the experiment

section of this paper. We constructed a classifier that di↵erentiated between low

and high preference for each of the 16 information channels on our fNIRS device (2

probes x 4 distances x 2 wavelengths), using the filtered light readings at each time

point of a trial as individual features to the classifer. Since we sampled data at 6.25

Hz, a 25 second trial would consist of approximately 156 features. Finally, we used

a built-in support vector machine (SVM) algorithm from Weka’s sequential minimal

optimization (SMO) package.

4.4.3 Mapping Preference to 5-Point Rating Scale

While previous fNIRS work [98] suggested that we could discriminate between pe-

riods of low and high preference, the movie dataset we used to ground our recom-

mendations was based on a 1 to 5 star rating. This left us with a mapping problem.

Recall that we built a separate classifier for each information channel of the fNIRS

device. To map classifications of low v. high preference to a 5-point rating scale,
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we took a percentage vote from the classifiers. For example, if 80-100% of our in-

formation channels classified the incoming data as a period of high preference, we

mapped this classification to a 5 star rating. If 60-80% of our information channels

classified the data as a period of high preference, we mapped this classification to a

4 star rating.

This mapping is not ideal in a real-world scenario, as classification uncer-

tainty is not equivalent to preference intensity. However, we use this approach to

accommodate for the necessary time constraints of a normal experimental session.

We suggest a more robust approach in the discussion section.

4.4.4 Dataset and Recommendation Engine

To build the movie recommendation engine, we used the HetRec 2011 MovieLens

Data Set, an extension of MovieLens10M dataset [22]. This dataset contains 2113

users, 10197 movies, and 855598 ratings from Rotten Tomatoes and The Internet

Movie Database (IMDB), two major movie rating websites [84, 137]. Thus, there is

an average of 404.921 ratings per user and 84.637 ratings per movie. Our movie rec-

ommendation engine was constructed using Apache Mahout, an open source machine

learning library for Java that includes built-in collaborative filtering algorithms. Our

user recommendation system was based on a nearest neighbor algorithm using eu-

clidean distance as a similarity metric.

4.5 Experiment

In order to evaluate the brain-computer recommender, we describe the experiment

protocol in two sections: training and testing. For each participant, the training

section consists of sending fNIRS examples to a machine learning model on known

values, or in this case, movies that we already know the participant likes or dislikes.

Instead of using preference ratings entered by people, the testing section uses ma-

chine learning classifiers to predict preference in real-time, which is used to provide

updated movie recommendations to the user.
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Figure 4.3: During training, participants viewed screenshots of their most favorite
and least favorite movies for 25 seconds, followed by a 10 second rest period.

4.5.1 Training

At the start of the experiment, we provided participants with a list of movies picked

from IMDB’s list of 250 best movies and 100 worst movies and asked them to

select their top three and bottom three. Participants viewed a timed slide show of

selected movie webpages during which we recorded their brain activity with fNIRS.

We showed each movie webpage for 25 seconds, followed by a rest period of 10

seconds (Figure 4.3). Participants viewed 12 slides of their top 3 movie titles and

12 slides of their bottom 3 movie titles. The brain activity recorded during these

slides were used as training examples to our preference model. At the completion

of training, the model was not altered for the remainder of the experiment.

4.5.2 Testing

In the testing section, participants viewed two trials, each of which consisted of a

string of twenty movie websites, viewed sequentially. For each movie, participants

viewed an IMDB page for 25 seconds, followed by an 8 second explicit rating period,

and an 18 second rest period that enabled us to refresh the recommendation model

(Figure 4.4).
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4.5.2.1 Brain Recommender v. Control Condition

Our motivation for exploring fNIRS is that it provides an implicit, unique signal

from the user that is not accessible by other physiological sensors. Because of this,

we believe that the first step in assessing its value is to compare it against a no-

input environment. Thus, users interacted with two trials — one involving the brain

recommendation system and one of a no input control condition. If our system can

deliver suitable recommendations running exclusively on brain measures, then fNIRS

can be used as an augmentative implicit input to information filtering systems that

is complementary to other physiological sensors.

We tested the following conditions:

• Control Condition: a series of pre-defined movies with average ratings are

used for all participants. This serves as a baseline for a no-input recommender.

• Brain Recommender Condition: implicit preference ratings, as predicted

by our fNIRS data classifier, are fed into a movie recommendation engine.

We show the same start movie as the control condition, but new movies are

selected based on previous preference values. For example, the 3rd movie is

based on recorded preferences for the 1st and 2nd movies.

fNIRS sensors remained attached to the participants during the course of

the entire experiment, giving no indication of the condition. Following each movie

in both conditions, participants were asked to provide an explicit preference rating

of the movie (1-5 stars). We used this rating to evaluate the performance of our

system. Unlike the implicit fNIRS readings, the ratings did not influence future

recommendations in any way.

4.6 Results

We ran this study with 6 male and 8 female volunteers (N=14), aged 19-28 with a

mean age of 22. The order of conditions was counterbalanced across all participants.
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Figure 4.4: (Top) For each condition, participants viewed 20 movies. Each movie
consisted of 25 seconds of viewing an IMDB page, an 8 second rating period, and
an 18 second rest period. (Bottom) An example of an IMDB webpage participants
viewed

Given our hypothesis, we identify three measures to explore the e�cacy of fNIRS

in driving our recommendation system.

1. Recommendation ratings by condition: How did participants rate movies in

the brain recommender condition in comparison to the control condition?

2. Recommendations over time: A good recommender should improve over time

as it constructs a more accurate picture of the user’s likes and dislikes. Does

the brain-driven recommender give better recommendations over time?

3. Classification accuracy : How well did our system guess the user’s preference
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for a given movie?

4.6.1 Recommendation Ratings by Condition

The key finding is that the brain recommender provided higher-rated

movies than the control condition as the experiment session progressed.

This di↵erence becomes statistically significant after the 13th movie in each session.

We display the distribution of all ratings in each condition in Figure 4.5.

Figure 4.5: Histogram of ratings in the two conditions. We see that brain recom-
mendations tend to be rated higher — mostly 3s, 4s, and 5s.

We would not expect a recommendation system to perform well until it had

seen enough examples to provide suitable recommendations. In our system, we saw

this switch occur typically after the 13th movie. We therefore analyzed the median

rating in movies 14-20 for each participant across both conditions (see Table 1 for a

summary). Running Mann-Whitney’s U test on movies 14-20 revealed a significant

e↵ect of condition (the mean ranks of the control condition and brain recommenda-

tion condition were 10.46 and 18.54, respectively; U = 41.5, Z = 2.88, p < 0.01, r =

0.54).

We also analyzed the median rating for the entire 20 movie session. As
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Condition Median Mean Std. dev.
Control 3 2.9 1.17
Brain 4 3.6 1.15

Table 4.1: Ratings across movies 14 to 20

expected, we did not find a significant e↵ect in condition (the mean ranks of the

control condition and the brain condition were 11.75 and 17.25, respectively; U =

59.5, Z = 1.86, p = .07, r = 0.29).

Condition Median Mean Std. dev.
Control 3 2.9 1.21
Brain 3 3.3 1.17

Table 4.2: Ratings across all movies

4.6.1.1 Unique Recommendations

To ensure the validity of these observations, we investigated whether our brain-

computer recommender was aligning itself to individual preferences or simply gravi-

tating to a small set of generally highly-rated movies. We found that 125 out of 280

(45%) movie recommendations in the brain condition were unique selections, mean-

ing that each participant saw an average of 9 movies no other participant viewed.

These results support our primary hypothesis that the brain-driven recommen-

dation system recommended movies that catered to the participant’s

individual preferences.

4.6.2 Recommendations Over Time

Independent of the control condition, we find that recommendations from our

system improved over time, suggesting that the preference model was

gradually learning about the user. Across all participants, we analyzed the

median rating given to movies at each time point (1-20) for each condition. For the

brain recommender, we ran a linear regression and found that the total number of

movies seen was a predictor of rating (b = 0.046, t(20) = 2.541, p = 0.021). This
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means that over the course of 20 movies, the median recommendation improved by

roughly one rating point (from 3 to 4 out of 5). The overall model fit was R2 = 0.223.

By comparison, applying a regression to the control condition determined that the

number of movies seen did not predict movie rating (b = 0.004, t(20) = 0.154, p =

0.898).

In fig. 4.6, we show this trend by plotting the mean rating at each time point

in the control condition with the brain recommender condition, and apply a linear

fit line to the data.

Figure 4.6: As participants viewed more movies, the system improved its recom-
mendations. We show a moving average of movie rating (window size = 5) during
the course of the 20 movie trial as well as a linear fit line. While the signal is noisy,
we found a statistically significant improvement in the brain recommender’s ratings
over time.

4.6.3 Classification Accuracy

Recall that we used a percentage vote from our classifiers to translate classifications

of high and low preference into a 5-point rating scale. To describe the accuracy of

our system, we will use low preference to refer to ratings of 1 or 2 (out of 5) and
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high preference to refer to ratings of 4 or 5.

In general, we found that our model skewed towards classifying movies as low

preference (141 out of 280), while users tended to gravitate towards higher ratings.

Figure 4.7 shows that when our model classified a movie as low preference, users

were just as likely to have highly preferred the movie as they were to dislike it.

However, when the model classified a movie as high preference (57 out of 280), users

were five times more likely to give the movie a rating of 4 or 5 (out of 5) than 1 or

2. This result is likely what drove the results from our system.

Figure 4.7: The preference model skewed towards classifying movies as low pref-
erence. However, when it classified the user’s state as high preference, the user’s
explicit preference often agreed.

Taking a more fine-grained view of accuracy, the system precisely predicted

the user’s explicit preference rating in 27% of movies shown to the participant,

and predicted within a single rating point for 72% of movies. Although the overall

classification accuracy of the system indicates that improvements need to be made

in signal processing or machine learning, we found that the mean prediction for

each user rating (14 participants x 20 preference predictions) was accurate relative
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Figure 4.8: Frequency of predicted ratings for each user rating category (1-5). Al-
though there was a wide variance of classifications for each rating category, relative
to each other, the distributions of fNIRS classifications accurately mirror ratings by
participants after each movie title.

to each other rating category (see Figure 4.8).

4.6.4 Anecdotal Evidence

After completing the experiment, we asked participants which of the two batches

of movies they preferred. Despite there being no detectable di↵erence between

conditions, 12 out of 14 participants immediately identified the group of movies

recommended by the brain condition. In addition, several participants expressed

regret for not recording movie titles that were recommended to them during the

brain condition.

4.7 fNIRS as Input and Future Work

In this paper, we presented a movie recommendation system that was driven by

fNIRS input and performed better than a no-input recommender. We found that it
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provided unique recommendations across participants and that the preference model

improved with increased interaction. These results suggest that fNIRS can be

used as input to information filtering system.

Nonetheless, as we found in our experiment, misclassifications of user state

are unavoidable. This is particularly true in early systems such as our own. Due

to the necessary constraints imposed by user studies, we updated our model of user

preference with each movie interaction, regardless of our confidence in the input.

This lead to a reliance on classifications we knew were probably incorrect.

In a real system, we might ignore all classifications that fall beneath some

confidence threshold, ensuring that the information we integrate into the user model

is more likely to be reliable. For example, the performance of our preference classifier

significantly increased when over 80% of our information channels classified the user

as having high preference. If we build a system that exclusively relies on that

information as input, we would expect to see more personalized recommendations

and sharper increases in user satisfaction.

Moving forward, there are a number of active research areas that will serve

to improve these classification rates: upgrading and increasing fNIRS sensors for

better coverage of the prefrontal cortex, identifying information-rich channels on

the probe, establishing features of the signal that best represent preference values,

and improving training periods to discern optimal examples of user preference. With

advances in machine learning and brain sensing technology we expect classifications

of user state to increase in accuracy. In the meantime, designers must minimize the

impact of misclassifications on the user.

4.8 Implications

Despite the current challenges of translating fNIRS input in real-time applications,

we believe that brain sensing has the potential to positively influence the delivery

of information to the user. We examine three ways in which fNIRS input may be

employed in information filtering systems.

75



4.8.1 fNIRS as an Augmentative Input

Because measurements of brain activity are largely an untapped source of informa-

tion, performing better than a no-input control condition demonstrates that fNIRS

can be used as an augmentative input in current recommendation sys-

tems. For example, one can envision Amazon or Netflix combining brain ratings

with other implicit signals, such as purchase history and viewing history, to improve

the overall accuracy of their model. Additionally, the user may be engaged in a

high performance task where avoiding disruptions is critical. These implicit mea-

sures help preserve user attention because they do not force an externalization of

subjective feelings onto a rating scale.

4.8.2 fNIRS as an Alternative Input

Moving away from movies and consumer products, we suggest that the true poten-

tial of neural measures lies outside current recommendation systems. For example,

Baeza-Yates, Broder, and Maarek identify implicit search - or addressing user needs

without a search query - as a primary challenge for the future of web search tech-

nology [8]. Thus, recommendations are advantageous in any information-saturated

environment. In our study, participants viewed each movie website for a preset

amount of time, and they were directed on a path of movies without an explicit

option to diverge from it. While these measures were put in place to increase

experimental control, they suggest that brain input may improve preference

measures in domains where other implicit measures are di�cult to ob-

tain. For example, we can imagine a car radio station that naturally adapts its

music to individual preferences without any intervention from the user.

4.8.3 Recommending Across Domains

Finally, we suggest that brain sensing may improve the comparison of infor-

mation from disparate sources. Our work generalized Luu and Chau’s measure

of drink preference to movie preference. Thus, we do not expect dramatic changes in
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the physiological response to preference across disparate information sources. Using

this general measure to redirect people towards relevant information both within and

across websites could prevent disruption and save cognitive resources for primary

working tasks.

General measures of preference can positively impact current approaches to

information filtering. Unifying and prioritizing social network status messages, for

example, is a nontrivial task. People are constantly interrupted with information

from Facebook, Twitter, Google Plus, Foursquare, etc. Because this information

takes di↵erent forms across networks, it is unclear how to compare a Twitter message

with a Facebook message without explicit responses from the user.

4.9 Conclusion

In this work, we have shown that fNIRS brain sensing can be classified in real-

time and applied to information filtering systems. Although there is still significant

work before fNIRS can be translated to real-world environments, we suggest that

brain-computer interfaces have the potential to aid users in everyday decisions and

judgments as they continue to wrestle with an increasing quantity of information. In

the past, researchers have identified periods of high workload in a number of scenar-

ios using fNIRS. While that research highlighted the potential of BCIs recognizing

when users may need information to be filtered, our work measuring preference be-

gins to o↵er a solution for which information should be filtered or prioritized. Given

these results, we believe that BCIs may one day provide user performance and sat-

isfaction gains in an information saturated environment. In the next chapter, we

extend this work to demonstrate the potential impact of combining multiple neural

measures.
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Chapter 5

When and Which: Using

Passive Brain Input for

Intelligent Interruption

Until this point, I have shown how fNIRS can be used a measure for how information

is presented, and as input to a system which selects which information should be

prioritized. Previous work using fNIRS has successfully created adaptive systems

that hinge on when information should be delivered [3, 150]. However, to fully

optimize the delivery of information to a user, an system will need to integrate all

of these measures simultaneously. That is, the system would deliver the relevant

information at the best possible moment and in the best possible format for the

user.

In this chapter, I demonstrate a notification management system that builds

towards combining measures of both measures of message relevance and workload

of the user. While this study focuses on the measurement of message relevance

(and simulates workload), we ground the integration of relevance and workload on

previous work in HCI and demonstrate how physiological signals can be used to

deliver the right information at the right moment.
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5.1 Background

The study of understanding and minimizing the impact of interruptions has been

an active area of research in Human-Computer Interaction for more than 15 years.

However, the problem of disruptions has not diminished. A 2012 Pew Internet

Survey found that 25% of smartphone owners believe their device makes it more

di�cult to focus on a task without being distracted, and 67% of cell owners find

themselves checking their phone for notifications even when they do not notice their

phone ringing or vibrating [149]. While the disruption of a single notification can

seem trivial, interruptions have been shown to increase levels of stress, annoyance,

and anxiety [10, 24]. As a result, researchers have continued to promote the need

for attention-aware systems or attentive user interfaces [9, 29].

To choose more intelligent moments to interrupt users, Horvitz and Apaci-

ble [75] devised a mathematical method for estimating the cost of interruption.

Their equation takes into account both the attentional state of the user and the

utility of the interruption, or the cost of a user in a particular attentional state

being disrupted by a task or communication event. Following this work is a long

history of research that uses various behavioral indicators to automatically model

user state. However, these attempts have met with mixed success for at least two

reasons: First, the utility of the interruption is extremely di�cult to calculate with-

out explicit input from the user. Second, collecting behavioral indices often requires

instrumentation of both applications and the operating system.

Physiological sensing has been a reasonable solution proposed in several

papers in order to gain information about user state without recording behavior

throughout a variety of programs. For example, pupil size, electroencephalography

(EEG), heart rate variability (HRV), and electromyogram (EMG) have all been used

to detect task boundaries by correlating their signals with changes in a users work-

load [87, 29]. While all of these methods have shown promise in detecting opportune

moments to deliver notifications, they largely have not been translated to systems

that operate in real-time. In addition, these metrics do not address the utility of the
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interruption, which involves factors such as the relevance or perceived value of the

incoming information. This final piece is critical because there is a well-documented

tension between the deferral of notifications and the awareness of the user [86, 168].

Critical messages should generally be delivered to users immediately, regardless of

their current level of engagement.

In this chapter, we demonstrate the use of fNIRS brain sensing to model

the relevance of incoming disruptions in a given task. Combined with workload

estimations, we believe that this work moves towards a system that passively and

automatically fulfills each of the terms in Horvitzs Estimated Cost of Interruption.

To demonstrate this concept, we build the CARSON system (Cognitive-based

Automatic Real-Time Sending of Notifications) that uses fNIRS data to pre-

dict and deliver notifications at optimal moments. We make the following contribu-

tions:

• We run a controlled experiment and find that fNIRS classifies the rele-

vance of emails at above-chance levels for 12 out of 14 participants.

• We demonstrate a physiological deferral policy which is mediated by

system’s confidence in classifications. We find that this graded adaptation

strategy maintains the user’s sense of control in the system despite misclassi-

fications.

• We use fNIRS measures of relevance to estimate the cost of interrup-

tion in an information monitoring task. We apply this measurement in

an adaptive system to mediate the delivery of email notifications, and find that

participants performa significantly better than in a maladaptive condition.

5.2 Interrupting the User

Experiencing interruptions during everyday tasks is increasingly becoming a com-

mon experience for workers. Whether it is a notice from a text message, instant

message, email, or simply a colleague stopping by the o�ce, interruptions have em-
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bedded themselves as fixtures in the modern o�ceplace. Although they can take

many forms and derive from many sources, more formally, an interruption refers to

disrupting a user’s attentional focus while performing a task.

While users tend try to compensate for disruptions by working more quickly,

this change has been correlated with more e↵ort, frustration, stress, annoyance, and

anxiety [10, 24, 100]. In an analysis of 414 programmers, Parnin and Rugaber found

that only 10% of programming sessions resume activity in less than 1 minute after

an interruption [121]. Thus, the challenge is whether systems can determine more

opportune moments of interruption.

Periods of low workload often correlated with task breakpoints [1, 10, 11, 85].

These breakpoints, which can be thought of as moments between tasks, create op-

portunity for interruptions in which users can handle incoming information without

severe disruption. By contrast, periods of high workload signal that the user may

be highly engaged with a task and that an interruption may be more disruptive.

When interruptions can be deferred, users often delay acknowledging noti-

fications during periods of high workload, opting to wait until a moment of low

workload [140]. However, knowing whether an interruption is important or not

severely limits the value of this approach, as users seek to balance awareness and

interruptions [76, 158].

While interruptions have clearly been shown to be harmful to user perfor-

mance, users tend to view notifications as a mechanism for passive awareness of

information [86]. Curiousity drives users’ attention to the inbox, where they infer

email utility based on top-level cues such as subject name [168]. Users can be so

intent on maintaining this level of awareness that they are actively willing to be dis-

rupted in order to be kept aware of the state of their inbox. In a study of Microsoft

developers and managers, turning o↵ notifications resulted in some users checking

their email account more often [86].

Given this tension, it is clear that the context of an interruption is impor-

tant [103]. For example, Cutrell et al. found that messages that are relevant to the

user are less disruptive than irrelevant messages [38]. It is with this consideration
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of context and engagement that researchers have attempted to build interruption

management systems.

5.2.1 Interruption Management Systems

For more than two decades, there has been an e↵ort to build systems that are

aware of how users manage their attention [75, 77, 101]. Bailey and Konstan write

that “Attention-aware systems could mitigate e↵ects of interruption by deferring

presentaiton of peripheral information until coarse boundaries are reached during

task execution” [9]. However, the task of constructing models of interruption is not

trivial, as the system must have an understanding of both the user as well as the

user’s context.

Horvitz et al. devised a mathematical approach to estimating the expected

cost of interruption (ECI) [75]:

ECI =
X

j

p(A
j

|E)u(D
i

, A
j

) (5.1)

where u(D
i

, A
j

) is the cost of a user in an attentional state A
j

being dis-

rupted by a task or communication event D
i

, and p(A
j

|E) is the probability of the

attentional state, conditioned on evidence stream E. Computing the expected cost

of all interruptions requires the summing of all utilities, weighted by the likelihood

of attentional state.

While Horvitz computed u(D
i

, A
j

) by having users assess the cost that they

would be willing to pay in order to avoid the outcome tuple (using dollars), ideally,

a system could infer the utility of a message without explicit user action. How-

ever, most work on mitigating disruption focuses exclusively on modeling the users’

attention in order to estimate optimal moments for interruption [75]. In addition,

modeling engagement often requires special instrumentation at the application or

operating system level.
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5.2.2 Physiological Computing Systems for Interruption

Physiological computing has been suggested as an alternative input to models of

interruption in order to improve the quality of input to the system [87, 30, 29]. In

addition, the potential generalizability of physiological would reduce the need for

instrumentation. To date, there have been at least two investigations of brain or

body signals as input to a physiological computing system for interruption.

Chen and Vertegaal found that both Heart Rate Variability (HRV) (r = 0.96)

and Electromyogram (EMG) (r = 0.85) correlated with participants’ self reports of

interruptability [29]. Using these measures, they constructed Plog: A Physiological

Weblog which broadcast a simple visualization of a user’s interruptability. While

Chen proposes the use of physiological metrics to build a ‘Physiologically Attentive

Interface’, no evaluation of such a system was ever conducted [30, 29].

Similarly, Iqbal [87] constructed the MeWS-IT (Mental Workload Based Sys-

tem for Interruption Timing) system, which leveraged pupil size to estimate the

user’s workload and provide more optimal interruptions. Iqbal proposed that work-

load measures could be combined with other external cues to determine opportune

moments, modifying Horvitz’ original equation:

COI
combined

= W
wl

⇤ COI
wl

+W
ec

⇤ COI
ec

(5.2)

where W is a weight that can be manipulated based on the quality of the

data source, wl is the workload, and ec is the external cues. We will employ a

similar approach in this study. Similar to Chen [30], the proposed system was not

evaluated.

Finally, while each of these studies focus on capturing the user’s workload

or attentional state with physiological measures, they largely neglect the utility. In

this chapter, we attempt to extend this work by constructing and evaluating an in-

terruption management system that uses physiological metrics of message relevance.
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5.3 Using fNIRS for Relevance

Although very little work has explicitly looked at fNIRS as it relates to relevant

information, there is a body of literature that suggests this kind of detection may

be possible. For example, fNIRS has been used on a single trial basis to detect

and classify signals that correlate with preference [80, 98, 126](or positive experi-

ence [94]). Referring to the previous chapter in this dissertation, we demonstrated

that this signal could be classified in real-time and used in an adaptive scenario.

In this work, we focus on work by Solovey et al. [153, 150], which demon-

strated using fNIRS to detect the impact of multitasking. Their critical finding was

that there are signal di↵erences between branching, or performing a secondary task

while holding in mind the goals from the primary task, and delay task, when a sec-

ondary task is largely ignored. We hypothesize that irrelevant notifications will force

a user to engage with content long enough to induce branching/dual-task signals.

Furthermore, relevant information actually aids a users primary task, potentially

reducing the resources required for it. In our study, we attempt to capture this

signal as users engage with relevant and irrelevant information.

5.4 Improving Real-Time Classification of fNIRS Signal

Starting with work described in Chapter 3, the biocybernetic loop used in this study

employs many of the same filtering and analysis techniques. However, two significant

additions were made to the our classification system in order to improve its use in

a real time environment: feature definition and classification probability estimates.

5.4.1 Feature Definition

In the previous chapter, examples were constructed using the raw fNIRS data at each

time point as an individual feature. However, combining such a large feature space

with the relatively small training set acquired during calibration can result in what is

commonly known as the curse of dimensionality. As data becomes increasingly high

dimensional, every example may appear to be sparse in the context of the enormous
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feature space. This is particularly problematic in scenarios where it is di�cult to

acquire a large training set due to timing constraints. The practical consequences

of the curse of dimensionality is the construction of models that overfit the training

data and do not generalize to other tasks.

As we surveyed in the related work section, a number of more descriptive,

high-level features have been shown to be successful in o✏ine analysis. For this

study we focus on the mean change in signal during a trial as well as a best-fit slope

of the signal for each trial. Thus, we generate 32 features (4 sources x 2 detectors x

2 wavelengths x 2 features) for each labelled example to our model.

5.4.2 Using Probability Estimates for Physiological Computing Sys-

tems

Because of the inherent complexity of the brain and general noisiness of physiological

data, we primarily rely on binary classification schemes (low v high workload, low

v high relevance) in order to achieve the highest possible classification accuracy.

However, directly mapping adaptive mechanisms that are triggered by one class or

another can result in jarring responses by the system, which may constantly be

reacting to predicted (and possibly misclassified) user state.

To construct a more graded approach to physiological computing systems, we

turn to machine learning algorithms that not only provide a classification, but also a

probability estimate of that classification. For example, the system may classify two

moments during interaction as high workload, however, the first may be assigned

a probability estimate of 60% while the second may have a probability estimate of

98%. Given these varying levels of confidence, the system should respond to the

user di↵erently. We employed this approach in a previous study by Afergan et al.

discussed in Chapter 2 [3]. In this study, we use the probability estimates in order

to manipulate deferral policies, discussed further in section 5.5.2.
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5.5 CARSON: System Overview

CARSON (Cognitive automatic real-time selection of notifications) is a backend

system that is designed to select opportune moments to interrupt the user based

on physiological input. It is able to compute the cost of interruption for a user by

predicting the relevance of an incoming notification as well as working memory load

of a user. In this section, we discuss high-level details of the CARSON system.

5.5.1 Calculating the Cost of Interruption

To calculate the cost of interruption of a single message, we return to Iqbal’s COI

calculation:

COI
combined

= W
wl

⇤ COI
wl

+W
ec

⇤ COI
ec

(5.3)

where W is a weight that can be manipulated based on the quality of the

data source, wl is the workload, and ec is the external cues. Given previous research

by Iqbal and Bailey [85], we use workload as an indicator of the attentional state of

the user, and we use message relevance as an indicator of the utility of interruption

(or external cues). CARSON listens to incoming classifications from OFAC (online

fNIRS analysis and classification system), described initially in Chapter 4.

Considering both Horvitz’ ECI and Iqbal’s COI, as well as the workload

and relevance metrics that CARSON incoporates, we construct the following COI

equation for use with physiological input.

COI = (W
wl

⇤ COI
wl

)(W
util

⇤ COI
util

) (5.4)

Workload (wl) varies between low and high, where the COI during periods

of high workload is 1 and the COI during periods of low workload is 0. Similarly,

communication events can be either highly relevant or irrelevant (low relevance),

where COI during periods of high relevance is 0 and COI of low relevance emails is

1. Similar to Iqbal’s equation, W represents a weight based on the quality of the

data source. In this case, we use the probability estimate of fNIRS classifications
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to estimate the quality of the data source. For example, a classification of high

workload with 75% confidence will result in (W
wl

⇤ COI
wl

) = 0.75.

The practical implication of this equation is that the COI is computed to

be high when a message of low relevance (or high utility that is approaching 1) is

delivered during a period high user engagement. A message that is highly relevant

to the primary task (or has a utility approaching 0) is always delivered, regardless

of the user’s engagement.

For a brief overview of the system, a relevance model of incoming notifications

is constructed using only physiological data. We use this model to estimate the

utility of the message, or (W
util

⇤COI
util

) in the previous equation. Next, we apply

this model to a working environment in which workload levels are either simulated or

estimated using fNIRS. These workload levels are used as a proxy for (W
wl

⇤COI
wl

).

Combined, we estimate the cost of interruption of an incoming notification to the

user and attempt to defer the notification until a more opportune moment.

5.5.2 Physiological Deferral Policy

When the estimated cost of interruption exceeds a predefined COI threshold, CAR-

SON defers the interruption until a more opportune moment, placing the incoming

notification into a deferral queue. Every second, as the users physiological state

changes, the system polls all of the notifications in the deferral queue and recal-

culates their cost of interruption. If the new cost is below the COI threshold, the

message is immediately delivered to the user.

However, strictly adhering to this policy ignores the tension between the

cost of interruption and the level of awareness that users prefer to have about their

information. It is not acceptable to defer a notification indefinitely simply because

the system has not determined a good moment for interruption, especially since

model-based systems may misclassify either the users attentional state or the utility

of the message. As a result, CARSON decreases the utility of the message (or

increases the perceived relevance of the message) over time, thereby decreasing the

COI of the message, and making an interruption more and more likely the longer it
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Figure 5.1: If the system had perfect confidence in the physiological input, irrelevant
interruptions would be deferred until the user is in a state of low workload. Relevant
interruptions would always be delivered immediately.

sits in the deferral queue.

This approach has an added benefit to physiological systems. Since the

utility is calculated as a function of the confidence (probability) in the classification,

the more confident that CARSON is that an incoming message is low-priority, the

higher its estimated cost of interruption will be. As a result, CARSON will allow

the message to sit in the deferral queue longer before being delivered to the user.

Likewise, if the system is not very confident in its prediction, the message has a

lower maximum deferral time. This strategy transforms an interaction that is largely

binary and discrete (interrupt or do not interrupt) into one that is continuous.

5.5.3 Optimizing Adaptation Parameters

One of the design challenges in constructing an interruption notification system is

selecting a cost of interruption (COI) threshold for the user. If the threshold is

set too high, all messages will be deferred, regardless of their importance. If the

threshold is set too low, all messages will immediately be delivered, regardless of

how disruptive they may be.
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This problem is worsened in the context of physiological metrics, where the

challenges in calibration and translation to real-time measurements results in vari-

ations in classification accuracy (or confidence). For some participants, the system

may never receive high-confidence values from the classifier, regardless of how criti-

cal the message is. As a result, assigning a neutral COI threshold would naturally

skew interaction with the system towards immediate delivery. Over increased use

with the system, this problem may naturally fix itself. However, in the context of

an experiment, this skewing can have a strong negative impact on interaction with

the system.

Figure 5.2: Rather than using a single cost of interruption theshold for all users,
CARSON attempts to optimize a threshold based on the distribution of classification
probabilities for relevant and irrelevant messages

As a result, CARSON is designed to manage the COI threshold by analyzing

the distribution of classification probabilities for both high utility messages and low

utility message and removing outliers (two standard deviations above/below the

mean). It then assigns a COI threshold by determining the midpoint of the resulting

mean classification proabilites for relevant and irrelevant messages (fig. 5.2). This

approach creates personalized adaptation parameters that may improve interaction
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even during short experimental sessions.

5.5.4 Extending COI: Integrating Cost of Delivery

In this chapter, we will primarily investigate the integration of fNIRS metrics of

relevance with estimations of the user’s workload. However, we began this thesis

by also considering how information is presented. The design behind CARSON is

to eventually optimize for three di↵erent metrics: engagement of the user, utility of

the message, and delivery mechanism of the message. To accomodate for this, we

can make a simple addition to the previous equation.

COI = (W
wl

⇤ COI
wl

)(W
util

⇤ COI
util

)(W
del

⇤ COI
del

) (5.5)

where COI
del

now represents the cost of the delivery mechanism or presen-

tation style given the user’s context.

In this model, we can envision a classifier that attempts to measure the im-

pact of visual design, for example, when engagement and utility are held constant

(much like the fNIRS measurements in Chapter 3). COI
del

may also measure the

impact of delivery for a given device. For example, we could assign a cost to notifi-

cations presented on a smart phone vs. notifications presented on a Google Glass.

While we will not explore this third term any further in the scope of this thesis,

a system that truly optimizes the delivery of information will likely incorporate an

understanding of the impact of the delivery mechanism.

5.6 User Scenario: Information Specialist

To test the ability to detect message relevance and apply it to a working environ-

ment, we constructed a hypothetical scenario for participants to act as information

specialists for a news station. Their objective was to monitor a Twitter feed about

the days event and periodically retweet messages to keep their followers informed.

To do this, they clicked on every 3rd tweet of each topic they were assigned to follow

(Figure 5.3). These topics were assigned by the system, and could vary in both
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content and number (with more topics being more di�cult). A new tweet entered

the participant’s stream at a random interval between 1500 and 3500 ms.

Figure 5.3: Monitoring a Twitter feed. Participants were asked to retweet (or click)
every 3rd tweet of each topic

While tracking these topics, they were also instructed to respond to incoming

emails from their bosses. These bosses either sent them emails that were relevant

or irrelevant to the monitoring task. Relevant emails specified that the user should

prioritize looking for a tweet from a specific user, and until that tweet was identified,

they no longer had to retweet other statuses on the topic. Irrelevant emails simply

acted as distractors, mentioning tweets from topics that other information specialists

were monitoring. In both cases, participants indicated the relevance of these emails

in their response (Figure 5.4).

5.6.1 Interface Details

As new tweets entered the system at the top of the simulated Twitter client, they

pushed down old tweets. Tweets were eventually pushed o↵ the screen without any

mechanism for the user to scroll and see them again. This mechanism enforced the
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Figure 5.4: Participants also received emails that were either relevant or irrelevant
to their information monitoring task

temporal urgency of the task. When participants clicked on a tweet (retweeting it),

it was highlighted in red. When topics changed, the bar where topic labels were

displayed (Figure 5.3) lit up for a moment and a notification sound played. Emails

told participants what the response options were (Figure 5.4). When an email was

received, a notification sound played (di↵erent than the topic switch notification).

5.7 Experiment: Email Relevance

We adopt a methodology similar to the one employed by Googles Priority Inbox

as well as spam filters. In these systems, users tag information that they deem

to be important (or in the case of spam filters, spam). Later, as a new email

enters the system, GMail uses a number of features about the email to predict and

flag important priority messages. The goal of our experiment is to demonstrate a

similar system that is completely independent of explicit user input, instead relying

on physiological data to estimate the relevance of new information. In the following

table, we compare these two approaches:
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Current Practice CARSON
1. Calibration: Using messages that are known
to have high or low relevance, listen to fNIRS
data immediately following interaction and build a
model to classify emails based exclusively on email
data

1. Assigning Utility: Email util-
ity is based on emails that are
manually flagged by users

2. Assigning Utility: All new emails with unknown
utility are passively assigned a utility value based
on fNIRS classifications

2. Creating an Email Model:
An email relevance model is con-
structed (and updated) based on
features of flagged emails.

3. Creating an Email Model: Instead of using
email features to cluster emails, CARSON uses a
wizard-of-oz approach and clusters them based on
their true label (relevant or irrelevant). However,
the system assigns each clusters utility using only
fNIRS classifications.

3. Predicting Utility: New emails
are compared against the email
model to predict their relevance.

4. Predicting Utility: Since CARSON is aware of
the true label of incoming emails, that label is used
to look up the avg. fNIRS utility calculated in the
previous step. This value is inserted into the COI
equation.

5.7.1 Calibration: Training an fNIRS Relevance Classifier

The first step to detecting email relevance in real time is to build a model that uses

fNIRS signals as input and outputs a prediction of an email’s relevance. In order to

compile a set of labelled examples to build such a model, we used a controlled exper-

iment in which the CARSON system was aware of the true label of each incoming

email (e.g. whether a message is relevant to a user or not).

Returning to our information specialist scenario, participants performed a

15 minute calibration session in which they were interrupted by 14 emails that were

relevant to their task and 14 emails that were irrelevant. Interruptions occurred, on

average, every 23 seconds, and the order of relevant vs. irrelevant emails was ran-

domized. During this time, the di�culty of the users monitoring remained constant

(i.e., the number of monitored topics stayed the same) to prevent confounds from

the primary task.

The online fNIRS classification system recorded 20 seconds of fNIRS data

following the opening of each email and extracted high-level features of the fNIRS

data described in the previous section. These features were then used to construct
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Figure 5.5: In the calibration task, participants were interrupted by 14 relevant
emails and 14 irrelevant emails

labelled examples (each email was either labelled as relevant or irrelevant), and

following the calibration period, a model was constructed to di↵erentiate between

relevant or irrelevant emails.

5.7.2 Assigning Utility to Emails using fNIRS

Although cross-validation is a suitable approach to testing the success of a model,

it often does not capture the di�cult task of classifying new data in real time - a

hurdle that any brain-computer interface must overcome. As users interact a with

new emails, a successful implementation of our relevance model should be able to

identify email relevance at above-chance levels using only fNIRS input.

After the calibration session, participants performed a similarly designed

session in which participants interacted with 20 emails (10 relevant, 10 irrelevant)

over a ten minute period. However, in this iteration we treat the utility of incoming

emails as unknowns that can only be assigned using fNIRS.

During this time, a sliding window of the past 20 seconds of fNIRS data

was continually fed to our model, retaining classifications approximately 3 times

per second. Based on the results of a series of pilots, we found that the classifica-

tions that most heavily correlated with ground-truth occurred between 15 and 25

seconds following interaction with an email. Therefore, we recorded and averaged
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the classifications during this period, and assigned this value as the emails utility.

5.7.3 Building an Email Relevance Model

At this stage, a deployed system would likely cluster emails that demonstrated

similar utility, then search for common features between those emails. This would

enable the system to predict a new emails utility before interaction.

Since this step was not a focus of ours (and would introduce an extra layer

of experimental complexity), we use a “wizard of oz” approach, simulating the con-

struction of an email relevance model. Instead of using message features to cluster

emails, CARSON clusters them based on their true label (relevant or irrelevant).

However, the system assigns each clusters utility using only fNIRS classifications,

acting as if it is unaware of true relevance of the message. As a consequence, the

high relevance cluster has the potential to be incorrectly assigned high utility be-

cause of poor fNIRS classifications. For the following sections, we use this model to

predict the utility of incoming emails.

5.7.4 Applying Relevance to Interruption Deferral

In order to apply our relevance model to the information specialist example, we

examine its impact in three di↵erent conditions (the e↵ect of which is shown 5.6).

For each of these three conditions, participants interacted with seven 45-second trials

of interruptions during high workload (monitoring two topics) and seven during low

workload (monitoring one topic). These trials were presented in random order,

which meant that the number of task switches from high workload to low workload

(or vice versa) could vary. On average, participants viewed 20 relevant notifications

and 20 irrelevant notifications during this testing period.

• Adaptive: The cost of interruption is calculated using predictions from the

email relevance model. To isolate the impact of these predictions, we estimate

workload based on the number of topics being presented to the user (2 topics

= high workload, 1 topic = low workload).
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Figure 5.6: The e↵ect of di↵erent conditions on interruption and deferral policies.

• Immediate: Notifications are delivered immediately, regardless of the COI.

• Maladaptive: Similar to adaptive, however, we inverse the predictions from

the email relevance model. For example, if the model predicted there was a

0.7 probability of an email being relevant, we use 0.3 as input to the COI

equation. This condition gives us an indication if the classifications we are

receiving are meaningful. If they are, there should be a significant di↵erence

between performance in the maladaptive and adaptive conditions.

5.7.5 Measures

We investigated the following dependent behavioral measures:

• Twitter Task Accuracy: We use Levenshtein distance to determine the

accuracy of users in the Twitter task [96]. Once user input is transformed to a

string and compared to a string of correct system input, Levenshtein distance

calculates the minimum number of edits (single-character) to change one string

into another. This approach allow us to gauge user accuracy in such a way

that a single counting error does not cascade through the entire trial.

• Relevance Miscues: When the participant received a relevant email, they

were instructed to stop counting tweets in the specified category until they

saw their high-priority tweet. Thus, if the participant did not respond to

relevant emails quickly enough, they may erroneously continue to click tweets
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in that particular category. This metric counts the number of tweets that were

erroneously clicked following the delivery of a relevant email.

• Response Time: The amount of time from when a tweet entered the infor-

mation stream until the tweet was selected (only relevant for selected tweets).

In addition, we analyzed survey data that was given to participants following

each condition:

• System Survey: Based loosely o↵ of a survey used by Gajos et al. [55],

asks questions that are more specific to the user’s experience with an adaptive

interfaces: How useful did you find the system? How confusing did you find

the system? How in control of the system did you feel? How e�cient did you

feel the system was?

• NASA-TLX: Shown in the Appendix, asks task-related questions about men-

tal load, physical load, temporal load, performance, e↵ort, and frustration.

5.8 Results

We ran this study with 14 participants, aged 18-23 with a mean age of 21. The

order of conditions was counterbalanced across all participants.

5.8.1 Model Building: Di↵erent People, Di↵erent Success

During each query to the relevance model, the system returns a probability estimate

from 0 to 100% of whether the user had interacted with a high-relevance email. To

determine the success of our model, we calculated the mean probability estimate

of each email that user encountered. Finally, to prevent outliers from disrupting

our analysis, emails that received probability estimates more than two standard

deviations from the mean were thrown out from the analysis. We hypothesized that

the average probability estimate for relevant emails would be higher than those for

irrelevant emails. These results can be seen in fig 5.7.
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Figure 5.7: We calculated the mean probability estimate that an email was relevant
for each message that participants interacted with. For each participant, we show the
average probability estimate for relevant emails (true label) - the mean probability
estimate for irrelevant emails. A di↵erence of 0 would indicate completely random
classifications. A perfect classification rate would result in a di↵erence of 1, as all
relevant emails would receive a 100% probability of being relevant and all irrelevant
emails would receive a 0% probability of being relevant.

We found that 12 out of 14 participants exhibited a higher probability esti-

mate with high relevance emails than low relevance. However, for those 12 partici-

pants, the average di↵erence between high relevance and low relevance emails was

only 8%, and varied from 1% to 21%. This finding suggests that while there are sig-

nal di↵erences between low relevance and high relevance emails, both in o✏ine and

online environments, these di↵erences may be subtle. The resulting challenge for

physiological systems is to drive adaptations with even subtle di↵erences in fNIRS

signals without disrupting the user’s interaction.

It’s also worth mentioning that the training period and testing period were

truncated in order to adhere to the normal timing constraints of a user study. It
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is possible that providing the system with more examples would have significantly

improved classification. In addition, as participants familiarized themselves with the

task, it is possible that they adapted di↵erent strategies that fundamentally changed

the neural response to relevant and irrelevant emails. Despite these relatively low

accuracy levels, we will discuss how to apply such a model to an adaptive system in

the following sections.

5.8.2 Performance

Figure 5.8: Boxplots of major behavioral metrics that describe the user’s interaction
in the Adaptive, Maladaptive, and Immediate conditions. The whiskers represent
the max/min values, excluding outliers. Outliers are assigned by being more/less
than 1.5 times the value of the upper/lower quartiles.

We found that Twitter task accuracy (Levenshtein edit distance) in the

Adaptive condition (M = 21.57, SD = 9.6) outperformed the Maladaptive con-

dition (M = 29.36, SD = 11.76) (t(13) = �3.1049, p = .008). In addition, the

number of relevance miscues was significantly lower in the Adaptive condition

(M = 2.71, SD = 2.55) than the Maladaptive condition (M = 7.64, SD = 2.65)
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(t(13) = �7.7859, p < .0001).

While the Immediate condition (M = 3.64, SD = 3.52) also outperformed

the Maladaptive condition in relevance miscues (t(13) = �3.6056, p = .003), there

was not a significant di↵erence in task accuracy (t(13) = �2.0624, p = .06). Finally,

despite an improvement in the overall performance means (fig 5.8), we found no sig-

nificant di↵erence between the Adaptive condition and the Immediate condition.

In the next section, we discuss the impact of classification accuracy on behavioral

results.

5.8.3 Attitudes Towards Adaptation

Turning to the surveys, a couple of participants noted di↵erences in the responses

of the di↵erent conditions. For example, one participant responded that the Adap-

tive condition was “Easier to handle/manage than the last one” (referring to the

Immediate condition). When the participant interacted with the Maladaptive

condition, they wrote “Much less e�cient with this system. Got lost”.

However, these observations were rare. Overall, we found no di↵erences

between conditions in any question from the NASA-TLX or system survey. This at-

titude is reflected best in one participant, who wrote “It seemed like it was the same

as before?”, referring to a comparison between the Adaptive and Maladaptive

conditions. Despite significant di↵erences in performance between the adaptive and

maladaptive conditions, the responses across all participants were indistinguishable.

We discuss the implications of this finding in the next section.

5.9 Discussion

5.9.1 Increased Accuracy, Increased Impact

In CARSON, we employed a deferral policy that was heavily dependent on the

system’s perceived confidence in its classifications (calculated using probability esti-

mates). While we observed trends across all participants that indicated a di↵erenta-

tion between relevant and irrelevant emails, at an individual level, the di↵erentation
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was small. As a result, the system constrained its maximum deferral time as short

as 5-7 seconds in order to preserve user awareness.

While we believe that this is a suitable approach to translate physiological

computing to realistic environments, within the context of the experimental design,

these deferral periods did not extend long enough to reach natural breakpoints, or

optimal moments of interruption. This translated to small (or negligible) di↵erences

between the Immediate condition and the Adaptive condition for many participants.

Given stronger classification results, the system would naturally extends its

maximum di↵eral period and reach natural breakpoints. If the signal classification

cannot be improved, another option is to change the adaptation parameters in order

to extend the maximum deferral period. In the next chapter, we discuss the potential

of optimizing adaptation parameters at an individual level.

5.9.2 Indistiguishable Adaptation

We found that participant attitudes to all versions of our system were virtually

indistinguishable. These results di↵er from studies that either discover participant

attitudes to align with performance gains or that the presence of system interven-

tions disrupts the user’s perception of control.

This finding may be an indication that physiological metrics are well suited

for use in interruption deferral systems. Users are generally not aware of the timing

or content of incoming notifications until they arrive. Despite the presence of system

manipulations, many participants could not di↵erentiate between systems.

In addition, the lack of di↵erentiation between conditions also suggests that

the physiological deferral policy successfully provided a subtle and gentle adaptation.

While users performed significantly better in the adaptive and immediate condition

when compared to the maladaptive condition, the maladaptive condition was not

disruptive enough to register on any dimension of the NASA-TLX or system survey.
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5.9.3 Multiple Measures: Workload and Relevance

In this experiment, we explored the use of fNIRS to detect the level of support

an incoming notification provided the user, distinguishing between relevant and

irrelevant messages. However, we estimated user’s workload based exclusively on

task (following 1 topics or 2 topics). In a real system, the user’s workload is likely

would not conform perfectly to task designation and would fluctuate based on other

environmental factors (such notifications, other working tasks).

Previous work has used brain-based metrics of workload as input to adaptive

systems [3], and CARSON was constructed to be able to integreate this second mea-

sure. Similar to relevance, CARSON keeps a running tally of probability estimates

that the user is in a state of high workload. When the system sees an incoming

message, it evaluates the average workload over the past 15 seconds and inserts this

value into the COI equation:

COI = (W
wl

⇤ COI
wl

)(W
util

⇤ COI
util

) (5.6)

We plan to investigate the integration of these two brain-driven metrics in a

future experiment.

One of the primary challenges in considering a system that uses multiple

user states is that the physiological response to these states may overlap or interfere

with each other. CARSON attempts to circumvent this problem by distinguishing

between continuous measurements of workload and relevance measurements that

are triggered by discrete events. The system is designed to constantly monitor and

store the user workload while they are engaged with their primary task. However,

as soon as a notification arrives, the system assigns message utility (or relevance)

based on how this secondary task impacts the user’s workload.

In general, the exploration of this topic will be critical in the future, as

it’s unlikely that BCI will be able to successfully capture the entirety of the user’s

context with a single user state. In the next chapter, we motivate the investigation of

fNIRS as a complementary source of input as a fruitful direction for future research.
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5.10 Conclusion

In this chapter, I presented the CARSON (cognitive automatic real-time selection

of notifications) system, an intelligent interruption system that uses physiological

metrics as input. Although previous work on notification systems use metrics of

workload to estimate suitable breakpoints for users, we focus on message relevance.

We found that fNIRS is capable of detecting small, but significant di↵erences be-

tween relevant and irrelevant messages. We also designed a interruption deferral

policy for physiological computing systems that modulates its intensity based on its

confidence in the user state model. We found that this mechanism allowed for subtle

manipulations of the system without negatively impacting the user’s perception of

the system. Finally, we suggested that message relevance may be integrated with

the user’s workload to create a system that delivers the right information at the

right moment.

103



Chapter 6

Conclusions

6.1 Summary of Work and Contributions

The use of brain data as passive input to intelligent systems has the promise of

improving the bandwidth between users and their computing devices. However, the

application and use of these passive signals is still largely unexplored. In particular,

there have been few examples of successfully using fNIRS to drive adaptive appli-

cations that improve experience for everyday users. In this thesis, I explored the

potential of fNIRS in information delivery systems by investigating the suitability

of using fNIRS measurements in three application areas:

• How information is presented to the user. We found that the fNIRS

signal can o↵er insight into the use of information visualization during complex

tasks. We observed signals that reflected participants’ subjective experience

of workload and di↵ered based on the individual.

• Which information is presented to the user. We found that we can

detect fNIRS indicators of preference and use them to drive an information

filtering system, improving user satisfaction with new information (in this case,

movie recommendations).

• Combining which and when information is presented to the user.

Grounded in previous literature, we found that the combination of measures
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has the potential improve user interaction. We used fNIRS measures of mes-

sage relevance to construct an intelligent interruption system and proposed an

interruption deferral policy based on physiological measures. We also outlined

a future system that incorporates how information is presented.

In addition to demonstrating the feasibility of using fNIRS in these systems,

I implement designs to facilitate the use of physiologically-driven systems, which

frequently su↵er from misclassification:

• In Chapter 4, I implemented a physiological approach to tagging infor-

mation. We polled multiple classifiers (based on source-detector pairings) to

map low v. high preference classifications onto a more granular, 5-star rating

system. Movies in which the preference classifiers did not produce consistent

classifications were assigned neutral (or uncertain) ratings in the system. This

mitigated the impact of misclassifications and allowed the system to improve

user experience despite relatively low classification rates. Motivated by the

system’s classification rates, we also suggested that future systems opt not to

tag information with a preference prediction if confidence levels were low.

• In Chapter 5, I implemented a physiological approach to deferring in-

coming notifications in which the maximum deferral time was modified

depending on the confidence of user state classifications. The result of this

design was that participants felt no loss of control in the system despite mis-

classifications.

Finally, based on previous literature, we built on top of the work of Girouard [59]

and Solovey [151] real-time fNIRS system in order to enhance the detection of user

state with fNIRS signals. We made the following significant changes to the system:

• Probability estimates of classifications: rather than simply receiving a

nominal classification, the system provides a probability estimate that the

reported classification is correct. In our case, this probability estimate is facil-
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itated by LibSVM, however, many machine learning libraries provide similar

functionality.

• Feature extraction and selection mechanisms: in Chapter 2, I discussed

the large feature space that researcers are exploring to classify fNIRS input.

We designed a module that allows researchers to shift sets of features and

apply them to real-time classification.

• Standardized input and output: Each time real-time classificaiton system

is used, it outputs all of the raw fNIRS data, as well as the labels and timing

for markers being sent to the system. We redesigned the system to be run on

its own output, allowing researchers to replay data with the precise timing of

any experimental session. While this modification was not discussed in this

thesis, it was critical for formulating e↵ective experimental designs.

Taken together, this work provides evidence for the continued development

and application of adaptive systems that are driven by fNIRS input. In addition,

it provides designs guildelines and areas of application for systems that utilize pas-

sive user input to optimize interaction. While the usage of passive brain-computer

interfaces in everyday scenarios can still be considered in its infancy, these methods

will aid the use of BCI as it wrestles with noisy data and translation to real world

environments.

6.2 Future Work: Improving fNIRS BCIs

There has been significant process in the state of fNIRS BCIs over the past few

years. However, the field is still young with few strong examples to point to. As

there becomes increasing interest in moving fNIRS to more real world scenarios,

we point out four potential areas of future research that would make fNIRS-driven

BCIs more robust: improving the user of fNIRS as a complementary input, reducing

the calibration (or training) time, improving the calibration task, and personalizing

adaptation parameters.
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6.2.1 Improved Understanding of fNIRS as Complementary Input

As we have motivated throughout this thesis, fNIRS has many desirable features

for researchers and practitioners - easy setup, relatively resistant to movement arti-

facts, and detects physiological parameters that are similar to fMRI. However, it is

unlikely that future of physiological interfaces will be ruled by a single sensor. As

we motivated with the comparison between EEG and fNIRS in Chapter 2, di↵erent

sensors have distinct advantages and disadvantages. In the future, intelligent infor-

mation delivery systems will likely integrate and leverage information from many

sources of passive input from the user [47]. As a result, it should be an objective

for future work to di↵erentiate between physiological sensors, and working contexts

that o↵er unique or redundant information.

This approach, or sensor fusion, has been explored often in the context of

other physiological sensors. Fairclough writes that the mapping between a physiolog-

ical measures and the pyschological construct as having one of three mappings [47]:

• One-to-One: a physiological signal maps to one and only only user state.

Similarly, a user state maps to one and only one physiological signal. This

kind of mapping is extremely rare.

• One-to-Many: a physiological signal maps to multiple user states. For exam-

ple, an increased heart rate may map to either emotional arousal or increasing

workload.

• Many-to-One: perhaps the most common occurrence, many physiological

signals work as indicators of a single user state.

Turning to fNIRS, existing work that collects fNIRS measuresments along-

side physiological measures (for example, EEG, heart-rate, etc.) rarely translate

the results to clear design guidelines. Understanding many-to-one mappings across

sensors may help with the improved accuracy of real time classification, o↵ering

validation checks to a predicted user state. Similarly, comparing and combining

multiple sensors may help solve one-to-many mapping problems that can plague a
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single sensor. Combining passive input may also aid the sluggish temporal response

of the BOLD signal, allowing for faster user state detection. Falk et al. believes that

this triangulation of physiological data will be critcal in order for fNIRS to remain

viable outside of the laboratory [48].

6.2.2 Reduced Calibration Time

Reducing the calibration time (or training time) will also be important for adoption

of NIRS-based interfaces, and BCI in general. Currently, models based on fNIRS

input are typically constructed with a limited number of labelled examples that

are far from optimal. However, increasing the number of training trials necessarily

increases the calibration period, reducing the usability of the device. For fNIRS to

be adopted in everyday settings, it would ideal for it to be ‘plug and play’. I outline

three methods for future research which would likely decrease the calibration time

and potentially increase the accuracy of the model.

• Cross-subject models: Rather than creating personalized models, it may

be possible to construct a model of a particular user state that is generalizable

across many people.

• Cross-session models: Typically, participants engage in a single experimen-

tal session in which they interact with a training period. However, whether

this model can be used across multiple sessions that span hours, or days, or

months is largely unknown.

• Increased examples through data sampling: Most of the studies in this

thesis employ a similar calibration strategy - one timed trial of a particular task

is used as a single labelled example in the model. However, it may be possible

to use other data sampling techniques to increase the number of examples that

can be extracted from each trial. While this would likely lead to more robust

models, researchers must take care to maintain the integrity of the model.
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6.2.3 Improved Calibration Tasks

While most work in BCI focuses on the signal analysis and modeling algorithms to

classify user state, the selection of an appropriate calibration task is non-trivial, and

equally critical. Machine learning algorithms typically work under the assumption

that the labels of training examples are correct. For example, given the fNIRS data

during a 3-back task and the associated label of ‘high workload’, it is assumed that

the data is a good representation of high workload. However, this is may not always

be the case. There are at least two potential areas where gains in classification

accuracy may be made.

• Selecting calibration tasks that resemble real-world environments while main-

taining the generalizability of the model.

• Use engagement checks by the system and discard training trials where the

user is not engaged

In Chapter 4, we suggested that one possible reason for underwhelming pref-

erence classifications was that there was no reasonable method for checking the

integrity of a training trial’s label. The design of the calibration task, modeled

after previous work on preference elicitation using fNIRS, used static images with

no interaction. Thus, although the user was presented with stimuli that the system

assumed should induce periods of high and low preference, there was no guarantee.

The user may simply have been bored or not engaged with the task.

Many of the calibration tasks that exist for fNIRS (and BCIs in general)

su↵er the same fate. They are largely grounded in repetitive psychology tasks that

can be divorced from real life scenarios (e.g. the n-back task or the TABLET task).

As a result, participants lose interest, resulting in the construction of models built

on incorrect information. While performance measures lend insight to a person’s

interaction, distinguishing between an engaged user and a unengaged user is not

often trivial. In addition, these performance metrics are often nonexistent in the

calibration periods of some user states, such as emotion.
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One potential remedy for this problem is the investigation of calibration

tasks that move closer to real-life tasks, while remaining generalizable enough to

translate to multiple contexts. Girouard et al. [59], for example, used carefully

selected videos as a replacement for rest-period stimuli (a static screen, often with a

grey fixation cross) in order to create a non-activation task for the prefrontal cortext

that remained engaging. Similarly, Flatla et al. [50] used motivating game elements

during calibration task to maintain engagement.

Improving calibration methods will almost certainly improve the classifica-

tion accuracy of models built on fNIRS data, however, researchers must remain

cautious about comprimising the generalizability of the model.

6.2.4 Personalizing Parameters for Adaptive Mechanisms

Each of the adaptive mechanisms used (or proposed) in this thesis were designed

to maximize the benefit of the user while minimizing the potential cost of misclas-

sifications. However, the parameters of these adaptations may also significantly

impact interaction. For example, in Afergan et al. [3], confidence thresholds were

used to determine whether the user’s workload should be increased or decreased.

It is very likely that significantly altering those thresholds would also significantly

alter a user’s experience with the system. In this particular example, Afergan used

extensive piloting to determine a set of thresholds that were suitable across most

participants. This approach was successful, however, it may very well be the case

that personalizing the threshold parameters to each individual would have yielded

even stronger results.

This personalization could be done in one of two ways. First, users could

manually modify their adaptation parameters during interaction with the system.

While this has the benefit of potentially maximizing a user’s perceived experience

with the system, subtle adaptation mechanisms may make the task of optimizing

these parameters di�cult for a user.

It may also be possible to automatically personalize parameters. In the

CARSON system, each participant’s cost-of-interruption threshold was calculated
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based on the average confidence value collected for relevant and irrelevant messages.

Creating thresholds using a sampling of existing classifications enabled the system

to personalize the adaptation parameters. It’s also possible that this approach could

aid the translation of models constructed during calibration periods to a real-time

environment. However, it should be noted that in order for this optimization to

occur, the system must receive a sampling of classifications from desired user state,

potentially increasing the training period.

6.3 Closing Remarks

The use of brain and body metrics has become increasingly prevalent with the popu-

lar emergence of wearable computing. At the same time, the amount of information

that is generated each year has increased at an exponential rate. While our comput-

ing devices have remarkable power and speed, they remain insensitive to our mental

states, frequently breaching the norms that we maintain in social interactions with

each other.

In this thesis, I explored the use of fNIRS as input to information delivery

systems, and showed that physiological input has the potential to improve the way

that people engage with information. As the number of sensors that our computers

have access to increases, our computing devices may leverage information from brain

and body sensors to respond in a manner that is more appropriate or more familar

to us. The field of brain-computer interfaces and physiological computing is still

young, but the potential is large. It is possible that the addition of physiological

sensors will transform our computers from tools to collaborators.
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Appendix A

fNIRS Plots During Interaction

with Bar Graphs and Pie Charts
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Figure A.1: Supplementing the deoxy-Hb plots in Chapter 3, the mean change in
deoxy-Hb and oxy-Hb hemoglobin across all trials for participants who believed
that bar graphs were more demanding than pie charts. This shows data from all
source-detector pairs not presented in the chapter. At the time of the experiment,
the 2 cm distance on the left probe and 2.5 cm distance on the right probe were not
functioning correctly. Therefore, they are omitted.
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Figure A.2: Supplementing the deoxy-Hb plots in Chapter 3, the mean change in
deoxy-Hb and oxy-Hb hemoglobin across all trials for participants who believed that
pie charts were more demanding than bar graph. This shows data from all source-
detector pairs not presented in the chapter. At the time of the experiment, the
2 cm distance on the left probe and 2.5 cm distance on the right probe were not
functioning correctly. Therefore, they are omitted.
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Appendix B

NASA-TLX
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Appendix C

CARSON System Survey
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