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From Brains  
to Bytes

Although most people are likely to 
conjure images of Neo’s frightening 
“head port” from The Matrix before they 
dream of a university student wearing 
an elastic cap studded with electrodes, 
the media has closely followed less 
sinister, if also less all-powerful, BCI 
research. In the past year, University of 
Wisconsin-Madison’s Brain-Twitter in-
terface received Time Magazine’s honor 
as the no. 9 invention of the year. Fur-
thermore, as brain-imaging technolo-
gy has become more portable and less 
expensive, the human-computer inter-
action (HCI) community has begun to 
bring science fiction closer to reality. 

Mind Matters
In the larger field of human-computer 
interaction, we are often concerned 
with the bandwidth of interaction be-
tween a user and the computer. How 
can we give the computer more infor-
mation, and more relevant informa-
tion? How can the computer give us 
more information without overloading 
our sensory systems? 

Using a mouse in addition to a key-
board increases the bandwidth from 
the user to the computer by augment-

ing the type and number of commands 
the computer can recognize. An appli-
cation that uses audio increases the 
bandwidth from the computer to the 
user, by adding to the type of informa-
tion the computer can output. Seen in 
this context, brain-computer interfac-
es present an opportunity to expand 
the user-to-computer bandwidth in a 
unique and powerful way. Instead of 
identifying explicit actions, we can de-
tect intent. Instead of evaluating action 
artifacts, we can recognize purpose. 
Even more interesting, we may be able 

to understand the user’s needs before 
the user can articulate them. 

But this is all far in the future. On 
the wide continuum between analyz-
ing electroencephalo-graphs to Avatar 
mind-machines, where are we now? 
And perhaps more importantly, where 
are we going? 

In this article, we will discuss sev-
eral directions for research into brain-
computer interaction, and the relative 
merits using these brain measure-
ments to give the user direct or pas-
sive control of computer interfaces. We 
will also introduce projects across the 
world that offer a glimpse into the fu-
ture of BCIs.

Imagine the following scenario:

It’s 9:30 p.m., and you’re driving in 
heavy traffic through Boston, unsure 
of where you’re going. Your phone is 
alerting you of text messages that your 
sister is sending every 30 seconds. Your 
GPS is commanding you to turn in half 
a mile, then a tenth of a mile, but still, 
you cannot tell which of the six exits off 
the rotary to take. To make things worse, 
the radio commercials are blaring, 
but you are focused on the road, and 

S cience fiction has long been fascinated by brain-computer interfaces (BCI)—the use 
of sensors to identify brain states. From Andre Maurois’ 1938 story “The Thought-
Reading Machine,” in which a professor stumbles on a machine that reads people’s 
thoughts, to the recent blockbuster Avatar, where humans control surrogate bodies 

with their minds, the public is captivated by the interaction between the human brain and the 
computers created by those brains. 

Brain-computer interfaces have the potential to change the way we 
use devices, and there are at least four methods for implementation.
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“As brain-imaging 
technology has 
become more 
portable and less 
expensive, the HCI 
community has 
begun to bring 
science fiction closer 
to reality.”
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uncomfortable taking your hand off the 
wheel to reach for the volume. 

Unlike the head-ports in the fantas-
tical world of The Matrix, this scenario 
is close to our current reality. Also un-
like a fantastical movie world, this is 
the world in which any brain-computer 
interface will have to function. But 
how could a brain-computer interface 
deal with this situation without adding 
to the already full spectrum of sensory 
input? Researchers are taking steps to-
ward answering this question and de-
signing BCIs to meet our needs. 

Several approaches to BCIs are 
being pursued using current brain-
sensing technology. These systems 
detect biological changes occurring 
naturally during the operator’s activ-
ity. Interface designers can use this 
information to deduce the operator’s 
state and translate it into commands 
that adjust the computer accordingly. 
Changes to the interface can be the re-
sult of a direct—voluntary—input, or 
a passive measure.

Direct Control Interfaces
Brain interfaces that allow direct con-
trol often replace a user’s normal mo-
tor function (generally used to move 
mouse cursors or type on a keyboard), 
and are currently the dominant strain 
of research in brain-computer interac-
tion. Direct control involves a struc-
tured mental activity that results in an 
explicit command to the computer. To 
move your mouse to the right, you might 
imagine moving your hand to the right. 

These direct-control interfaces rely 
on the fact that the brain activity oc-
curring when you move your hand to 
the right is very similar to the activity 
that occurs when you imagine moving 
your hand to the right. This consisten-
cy can be used to pair mental “move-
ments” with commands: when partici-
pants imagine waving their arms up 
and down, for example, the volume on 
their phone might mute, or the zoom 
level on their screen might change.

Using this mechanism, we can 
imagine a world for our car scenario 
in which direct control interfaces are 
commonly available to everyone.

You have trained yourself to produce 
specific brain activity to control different 

technologies in the car (much like how 
we learn to touch type). Without taking 
your eyes off the road, you decide to 
silence your phone, and perform mental 
arithmetic, which the brain-computer 
interface recognizes as the command 
for muting the phone. You imagine 
swinging your right arm up and down, 
and the device also recognizes this as a 
command, turning the radio down. You 
imagine yourself moving your left pinky, 
and again, the device recognizes your 
brain state, redrawing the GPS map in 
more detail. Through the entire process, 
your eyes never leave the road, your 
hands never leave the steering wheel, and 
you never say a word.

If this sort of control seems con-
trived, it is because most direct-con-
trol interfaces are currently geared 
toward disabled users, such as para-
lyzed patients, or people with severe 
physical disabilities. In disabled us-
ers, familiar, physical mental com-
mands can be repurposed to perform 
other tasks, as these motor skills are 
not available. However, if we look fur-
ther into the future, users may not 
need to perform mental gymnastics, 
instead using the thought processes 
that occur in the brain anyway to con-
trol external devices. 

To survey current direct control re-
search, we further divide the topic into 
two brain-imaging techniques: invasive 
and non-invasive. Although brain sens-
ing is not limited to direct control inter-
faces, we are not aware of any passive 
systems that use invasive techniques. 

Invasive
Invasive BCIs involve implanting mi-
croelectrodes into the grey matter of 
the brain during neurosurgery in an 
effort to capture brain activity more 
accurately. While significant, suc-
cessful work is being performed on 
invasive techniques at research fa-
cilities such at Brown University and 
University Wisconsin-Madison, there 
are many risks, difficulties and limi-
tations involved. Aside from the diffi-
culty of inserting sensors directly into 
the brain, there is the risk of scar tissue 
formation, infection to the brain, and 
the unknown long-term stability of 
implanted micro-electrodes. Depend-
ing on the task and the participant, ac-
complishing a task using brain states 
can require long training, and some 
users may never reach the desired level 
of reliability. 

Despite this, any improvement in 
communication is worthwhile and re-
warding for paralyzed users, who may 
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Figure 1: Unlike some BCI systems that require inserting devices directly into the 
brain, EEG electrode caps are worn externally.



Figure 2: An fNIRS sensor with five light sources and one detector.

not have voluntary control over any 
muscles at all. Invasive BCIs can pro-
vide remarkable new opportunities 
for disabled users; although currently 
such systems are limited to fairly ru-
dimentary communication such as 
choosing pictures, letters, or cursor 
directions, some potential advantages 
for future applications include repair-
ing damaged sight and providing new 
functionality to those with paralysis. 

Non-invasive
Non-invasive direct control technolo-
gies, unlike their invasive counterparts, 
use external systems, such as electro-
encephalography (EEG) or functional 
near-infrared spectroscopy (fNIRS), to 
measure brain activity. See Figure 1 
for an example. Non-invasive imaging 
technologies are commonly used in a 
number of fields, including medicine 
and psychology, and provide valuable 
insight into brain activity without re-
quiring surgery or implantation. As 
a result, they are an attractive option 
for researchers who want portable and 
flexible systems for measuring and in-
terpreting this data.

EEG measures brain activity using 
electrodes placed on the scalp that de-
tect electrical potential caused by neu-
rons firing, providing researchers with 
information about activation in numer-
ous regions of the brain. The complexity 
of these systems varies with the number 
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of electrodes used and the techniques 
to process the data captured. 

One advantage of this system is that 
the data recorded has a high temporal 
resolution. The system can detect brief 
changes in brain activity, in the milli-
second realm. Additionally, it is possi-
ble to buy EEG systems that are small, 
lightweight, and portable. However, a 
number of limitations affect the util-
ity of the data collected from EEG sys-
tems. For example, the EEG system is 
sensitive to muscle contraction, limit-
ing the user’s physical movements dur-
ing cognitive activity measurements. 
Additionally, these systems have low 
spatial resolution. It can be difficult or 
impossible to determine which precise 
region of the brain is being activated. 

There are many successful direct 
control paradigms using EEG signal, 

“One recent example 
of a BCI that uses 
EEG is a wheelchair 
that can be 
controlled through 
brain activity.”

which include visually evoked poten-
tials (SSVEP), P300-based BCI, motor 
imagery, event-related synchronization 
and slow cortical potentials. A great ex-
ample of work in this direction can be 
seen by reading Wolpaw et al.’s 2002 
article in Clinical Neurophysiology [3]. 
The P300-based BCI allows selection 
by taking advantage of brain activity, 
called a P300, that occurs when your 
intended target is highlighted. This 
has been used successfully to create a 
spelling application.

One recent example of a BCI that 
uses EEG is a wheelchair that can be 
controlled through brain activity, cre-
ated by Brice Rebsamen et al. The re-
searchers created a list of paths to lo-
cations in a small apartment and then 
presented those target locations to us-
ers. To select a target, the users were 
instructed to focus on that target when 
it was presented to them. After several 
minutes of training with a participant, 
the system could detect the desired lo-
cation with almost perfect accuracy. 

Clearly, there are limitations to this 
system, such as predetermining a list 
of routes and targets, which may not be 
possible in large or complex environ-
ments. However, this work is an exam-
ple of the possibilities for EEG systems 
to be developed and incorporated into 
more sophisticated technologies.

Functional near-infrared spectros-
copy (fNIRS) is a vastly different tech-
nology than EEG in that it measures 
blood flow changes instead of elec-
trical activity. It uses optical wires to 
emit near-infrared light, which is then 
refracted from the tissue of the head, 
including the brain (see Figure 2 for an 
example of the device). Sensors in the 
system detect changes in oxygenated 
and deoxygenated blood in that region 
[1]. This technology is marked by a 
high degree of spatial resolution but is 
less temporally sensitive to changes in 
brain activity than EEG. 

The brain data recorded by fNIRS is 
less susceptible to movement artifacts 
and can be used in combination with 
computer usage. fNIRS has another no-
table advantage: it has a shorter setup 
time than EEG, which makes it a more 
practical option for use in research, 
government work, and commercial ap-
plications. Additionally, the part of the 
fNIRS system placed on the scalp or 
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forehead is typically small and there-
fore less bothersome to users than oth-
er brain measurement technologies. 

Ruldolph L. Mappus IV and his 
colleagues at the Georgia Institute of 
Technology have used fNIRS to devel-
op a technology for drawing letters us-
ing data collected from brain activity. 
The subjects were instructed to trace 
the letters “C” and “J” by perform-
ing different mental tasks to control 
the drawing direction. The research-
ers noted some difficulties with their 
design, including the slow fNIRS re-
sponse time for changes in mental ac-
tivity. However, the researchers indi-
cated that, in the future, they believe 
that this work can be expanded to pro-
vide users with a broad range of tools 
to draw using fNIRS technologies.

Passive BCIs
The previous examples have helped il-
lustrate direct control BCIs, which use 
brain activity as the primary input de-
vice, but which often require consider-
able user training to generate specific 
brain states. However, these technolo-
gies have a reduced relevance in the 
ordinary computer environment. A 
healthy student has little need to hook 
herself up to an EEG in order to move 
a cursor. It’s easier, faster, and less er-
ror-prone to simply use a mouse. With 
this in mind, our research at Tufts 

University has turned to passive BCIs, 
interfaces that detect brain activity 
that occurs naturally during task per-
formance [2]. Passive BCIs focus on 
the brain as a complementary source 
of information, an additional input 
used in conjunction with convention-
al computer inputs such as the mouse 
or keyboard. 

Generally, passive BCIs use non-

invasive measuring techniques such 
as EEG and fNIRS. fNIRS, as previ-
ously mentioned, requires little in the 
way of set up and imposes relatively 
few physical or behavioral restraints 
on the user. Because many passive 
BCIs aim to observe brain signals that 
can be used in a relatively ordinary 
computer task environment, these 
qualities make fNIRS particularly at-
tractive as a measuring tool.

How would a future of passive BCIs 
impact our previous car example? 
Imagine now that you’re wearing the 
headband shown in Figure 3:

You drive, think, and behave normally, 
as you would before the BCI was 
introduced. Brain-sensing devices 
determine that you are mentally 
overloaded, juggling the phone, GPS, 
radio, and driving simultaneously. As 
a result, the system gently simplifies 
the map on your GPS. You may not 
have a clear understanding of the 
neighborhood, but you won’t miss this 
turn. The system subtly turns down the 
interior dashboard lights to prevent 
glare on the windshield. Finally, since 
the sender of the text messages had 
previously been designated as low-
priority, the system silences the phone, 
waiting for a better time to let you know 
about the messages.

The principal advantage of passive 
BCIs is that they operate using the 
brain activity that occurs naturally 
during task performance, and so they 
do not add to the user’s task load (in 
this example, the driver does not have 
to think about waving her arms or any 
other extraneous mental process). Cur-
rently, we are working towards a simi-
lar class of BCIs to create adaptive en-
vironments. 

In a recent experiment designed 
to lead to adaptive interfaces, partici-
pants played Pac-Man at two different 
levels of difficulty, while their brain 
activity was measured using fNIRS. 
Statistical analysis of the fNIRS mea-
surements allowed the participants to 
be classified both by their playing state 
(playing versus rest) and difficulty level 
(easy versus hard) with high accuracy. 
Using this data, the interface could be 
subtly adapted to the task at hand. If 
the user is resting, play quiet, soothing 

Figure 3: fNIRS sensors placed on the forehead can be non-intrusive when secured 
by a simple headband.

“Brain-computer 
interfaces present 
an opportunity 
to expand the 
user-to-computer 
bandwidth... Instead 
of identifying 
explicit actions, we 
can detect intent. 
Instead of evaluating 
action artifacts, 
we can recognize 
purpose.”



music. If the user is playing the game, 
speed up the pace and volume of music 
to make the experience more intense 
and enjoyable. Other research at Tufts 
has examined fNIRS use in an ordi-
nary computer environment, as well 
as determined differences in semantic 
and syntactic workload.

Passive BCIs also lead to a completely 
different paradigm for interaction with 
the user. It is no longer acceptable to use 
bold, explicit reactions to brain states 
that we make in direct control inter-
faces. Instead, we find ourselves drawn 
toward gentle, more implicit changes to 
the interface. Fading, overlaying infor-
mation, or changing an application’s 
screen real estate are options that, if 
done slowly enough, may affect the us-
er’s focus in a positive way. 

While this type of research is still 
in its infancy, there are countless ex-
amples of possible adaptive interfaces 
that could be used with fNIRS mea-
surements. For example, at any given 
moment during the day, a stock broker 
could be overwhelmed with work or ex-
periencing a lull in activity; either way, 
he must always be aware of the market. 
A display that gently changes visualiza-
tions of the market according to the 
user’s workload could be invaluable. If 
the stockbroker is not currently exert-
ing a high mental workload, the dis-
play can show his stock visualization 
as highly detailed, giving the stockbro-
ker as much information as possible. 
See Figure 4. If the stockbroker is work-
ing exceptionally hard at his email and 
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Figure 4: Stockbrokers might use BCIs to project appropriate market visualization based on how much distraction they can 
handle at the moment. The image on the left is what a broker might see when engaged in low amounts of work, while the more 
simplified version might be more appropriate when the mental workload is greater.

cannot afford to be distracted by com-
plex stock information, the display can 
simply lower the level of detail. In this 
way, the broker will still recognize ma-
jor changes in the data without getting 
bogged down in the details. 

We can imagine a class of interfaces 
that work to benefit the general popu-
lation, systems that dynamically filter 
streams of information (Twitter, RSS, 
email) to accommodate the workload 
of the user, systems that dynamically 
adjust teaching methods to best suit a 
child’s learning style. 

Looking Ahead
BCIs currently in development have the 
potential to open worlds of communi-
cation and mobility to disabled users; 
further up the pipeline, BCIs have the 
potential to adjust our constantly-busy 
environments to provide us with the 
best possible chance of completing 
our tasks. Whether this is successful 
navigation to a new place, remotely 
commanding a robot, or buying all the 
items on a grocery list, BCIs hold the 
promise of performing tasks or chang-
ing environ-ments in the real world 
with no physical manipulation at all.
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