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ABSTRACT
The bubble cursor is a promising cursor expansion technique,
improving a user’s movement time and accuracy in pointing
tasks. We introduce a brain-based target expansion system,
which improves the efficacy of bubble cursor by increasing
the expansion of high importance targets at the optimal time
based on brain measurements correlated to a particular type
of multitasking. We demonstrate through controlled experi-
ments that brain-based target expansion can deliver a graded
and continuous level of assistance to a user according to their
cognitive state, thereby improving task and speed-accuracy
metrics, even without explicit visual changes to the system.
Such an adaptation is ideal for use in complex systems to steer
users toward higher priority goals during times of increased
demand.
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INTRODUCTION
In most graphical user interfaces (GUIs), navigating and
pointing to an interface element is a necessary prerequisite
to select it. A nearly incessant exchange between computer
and user, clicking on graphical elements is a problem for
which slight optimization can be extraordinarily impactful
over longer sessions [6]. Consequently, considerable research
has focused on improving users’ speed and accuracy in basic
point-and-click tasks [27, 50]. Small differences in interac-
tion technique times can make much bigger differences in
cognitive strategies and thus in high-level task performance
beyond just the change in interaction time [18]. Because a
system receives no extra information while a cursor travels
through empty space [20], Grossman and Balakrishnan’s bub-
ble cursor creates an area cursor that always selects the clos-
est target to the cursor [19]. Bubble cursor improves overall
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performance compared to a standard cursor in these types of
GUIs, and we introduce an augmentation which further en-
hances the technique’s usability by integrating passive brain
input as well as a ranking of the target’s importance. While
bubble cursor decreases movement time by always selecting
the closest target, we can increase the effective width of high-
importance targets with a variable parameter, making it easier
to select these targets with no extra effort from the user. The
variable parameter essentially gives us a flexible parameter
that can be set in real time instead of defining it as a con-
stant. Specifically, we propose a target expansion technique
that aids the user in focusing on high importance objectives
when necessary by monitoring the user’s cognitive state and
increasing the effective width of high-priority targets when-
ever we detect a state of multitasking.

In a pointing task, performance tends to suffer while the user
is simultaneously completing multiple tasks with high cog-
nitive workload [22]. It might be appropriate, therefore, to
modify a user interface so that it facilitates the user’s ca-
pacity to engage the essential on-screen elements. But the
user’s goals and capacity to meet those goals may change
on a moment-to-moment basis, and an interface that empha-
sizes high-priority targets at all times comes at the expense
of interaction with lower priority elements. Ideally, the in-
terface should be sensitive to the user’s context as it changes
over time, dynamically and unobtrusively adapting to meet
the user’s needs. Unfortunately, standard cursor adaptations
are limited to direct user input and by the transmission capac-
ity between the user and the input device.

We propose to address this problem by incorporating phys-
iological computing, which “has the potential to extend the
communication bandwidth of HCI and enable a dynamic, in-
dividualised dialogue between user and system” [15] without
any effort on the part of the user. By monitoring user cog-
nitive state, we can tell when the user may be multitasking
and aid the user in selecting targets of higher priority by in-
creasing the width in bubble cursor calculations. Using this
state information, we may be able to make higher priority
targets easier to select at the expense of lower priority ones
at critical moments, improving movement time and accuracy.
In this paper, we propose a brain-computer interface (BCI)
using functional near-infrared spectroscopy (fNIRS) as real-
time input to influence target width in a pointing task.

In contrast to systems which use physiological data to de-
termine when to turn on and off system automation, we use
a more graded, continuous level of target adjustment, which
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aids the user without committing entirely. The system ap-
plies this assistance without any visual feedback to the user
to avoid suggesting that the user has been deemed in need of
help and spawning a feedback loop.

Small improvements to interface navigation systems can have
a measurable impact on user performance in the long run [18].
These benefits may be particularly useful in high intensity in-
teraction scenarios where a primary task demands the user’s
finite cognitive resources, leaving little for control of the in-
terface. In some of these scenarios, the user must engage
and hold in mind audio content while navigating a GUI.
For example, an air traffic controller may be directing pilots
while simultaneously interacting with graphical depictions of
planes on the screen or an emergency response dispatcher
may be communicating with units while selecting medical re-
sources. Unmanned aerial vehicle operators speak to each
other while monitoring vessels and financial traders may
communicate while placing orders. These situations, which
pose high and variable demands on the user’s workload, call
for seamless and adaptive interfaces. In performance-critical
situations, we posit that an interface should sacrifice the ease
of completing incidental goals in favor of more urgent goals.

We base our experiment on previous literature that shows the
capability to detect cognitive multitasking signals in the ante-
rior prefrontal cortex [29, 45, 46] using brain-sensing tech-
nologies and these patterns translate to dual verbal-spatial
working memory tasks [33]. We use fNIRS, which shines
near-infrared light at different wavelengths into the scalp and
detects the amount of light that is reflected back. From this,
we can infer changes in blood flow and oxygenated and de-
oxygenated hemoglobin levels in the prefrontal cortex, which
correlate well to cognitive activities. The fNIRS sensors are
comfortable, easy, and quick to setup, and they are non-
intrusive so that a user can still perform tasks normally while
wearing the sensor. Thus, it is ideal for passive physiologi-
cal sensing because it can directly access brain signals with-
out significantly disturbing the user, and it has been shown
to measure working memory and multitasking [11, 29, 39].
In addition, recent research by McKendrick et al. [33] has
shown that we can measure activation patterns during a dual
verbal-spatial working memory task. Recent fNIRS literature
has shown that we can continuously model fNIRS data and
measure workload in real time [1, 23, 31, 38].

In this paper, we prototype and evaluate an area cursor system
with brain-based dynamically expanding targets. To make
the transition of expanding targets seem fluid, the user only
witnesses the effect of the area cursor and does not see a vi-
sual increase in target size. In an interface with targets of
variable importance, we increase the reach of bubble cursor
to be more attracted to high-priority elements when we de-
tect brain signals correlated to a cognitive multitasking signal
(called branching). To demonstrate its efficacy and to config-
ure adaptation and expansion parameters, we run a controlled
experiment that modulates workload during a visual search
and pointing task. We show that the time and accuracy sav-
ings by predicting user state correctly and helping the user
easily navigate to high-priority targets outweighs the slight

cost of the user having to move closer to a lower priority tar-
get when we guess incorrectly. In addition, we show that
a constant expansion of high-priority targets actually leads
to an overall decrease in performance, highlighting the im-
portance of accurately and continuously measuring the user’s
need for this assistance and applying it only at the appropriate
times.

This paper makes three primary contributions:

• We show that we can use fNIRS brain input to improve
performance in a target selection task by dynamically up-
dating a target’s activation area.

• We demonstrate that adjusting the activation function,
rather than the visual form of targets, can improve user per-
formance without disrupting the user’s mental model of the
visual interface.

• We highlight a physiological interface that treats user input
as a continuous measure, as opposed to binary or discrete
user classification.

BACKGROUND AND RELATED WORK
Target acquisition tasks are often measured in terms of speed
(movement time) and accuracy (error rate). We use the fun-
damental concepts of this field to design ways in which we
can leverage human physical input with passive brain input.

Movement Time and Bubble Cursor
The general principle that accounts for the effectiveness of
area cursors is a familiar and accepted one in HCI. Fitts’
law measures the speed and accuracy of pointing perfor-
mance, and as Kelso explains, “the relation between ampli-
tude, movement time, and precision (or tolerance)” [28]. Al-
though the formula has been altered for many purposes, a sta-
ble and widely used version is MacKenzie’s 1992 formula,
describing movement time (MT) as:

MT = a+ b log2(
A

W
+ 1) (1)

where A is the amplitude (distance) of the movement and W
is the target width [30], a and b are interface constants, re-
ferring to the start/stop time of the device and device speed,
respectively. The logarithmic portion of this equation is also
known as the index of difficulty, and refers to the amount
of work needed to reach a target. This implies that either
increasing target size (W ) or decreasing distance (A) on a
pointing task will decrease movement time. Manipulating
these variables allows the opportunity to improve perfor-
mance in target selection tasks and lays the foundation for
area cursors.

In 2005, Grossman and Balakrishnan first introduced the bub-
ble cursor, a target acquisition technique that resized the ac-
tivation area of a cursor to automatically select the closest
target and provide the user visual feedback about the target
selected [19]. In the Fitts’ law equation, this mechanism
increases effective target width, the size of a targets activa-
tion boundaries [19], and thus reduces movement time in a
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target acquisition scenario that includes surrounding distrac-
tor targets. Bubble cursor has shown consistently large per-
formance improvements over a standard cursor, and custom
tweaks can further enhance performance. Mott and Wob-
brock’s Bubble Lens augmentation of bubble cursor with an
additional lens is the fastest pointing technique to date [36].

Other techniques focus on increasing target size by expand-
ing clusters of targets [6], creating cascading menus with en-
larged activation areas [9], or expanding targets once the cur-
sor comes close [5]. These techniques expand the boundary
of each target based on a Voronoi tessellation so that each
target encompasses its maximum effective size without inter-
fering with other targets. Zhai et. al showed that users per-
formed better even when they did not anticipate an increase
in target size [52]. Finally, McGuffin showed that pointing in
these tasks is still dictated by Fitts’ law and that “performance
is governed by the target’s final size, not its initial one” [32],
even if the target only increases in size once the user has nav-
igated the cursor close to the target. This indicates that users
can take advantage of larger targets even if they were not ex-
pecting this increase.

While most of these variants have proven efficient in decreas-
ing movement time by changing the width parameter in Fitts’
law, they assume that the user is focused on the pointing task
and do not consider situations where the user may be do-
ing other work. In addition, these area cursors often entail
an extra layer of visual distraction since they provide addi-
tional graphical feedback and stray from the traditional cur-
sor model. Our goal is to add to the efficiency of the bub-
ble cursor by subtly and dynamically adapting the size of the
high-priority targets based on the user’s cognitive state. In
our custom version, we change the motor space of the upper-
case targets, having the width increase and take up part of the
motor space for lowercase letters (without visual indication).

Brain-Computer Interfaces
Since optimal target width may vary depending on the user’s
context or cognitive state, we monitor relevant cues in the
user’s changing physiology. We build off the field of pas-
sive brain-computer interfaces - systems that use input from
brain sensors to covertly adapt their function, controls, or dis-
play automatically in response to changes in the users state.
Passive systems stand in contrast to active BCIs, where neu-
ral correlates of the user’s intention map directly to system
inputs [51]. In target-selection-based active BCIs, the system
responds explicitly based on user thought, directing the cursor
and clicking by monitoring the brain’s unique response when
it imagines mouse navigation movements and activating a tar-
get [14, 43]. While these projects are invaluable for people
with limited motor function, the usability of brain-controlled
navigation systems pales in comparison to an ordinary mouse.
Instead, using passive BCI, our goal is to identify and lever-
age naturally-occurring user states to subtly enhance interac-
tion target selection within the general population.

Cutrell and Tan suggest that the implicit commands inferred
from a users changing brain activity may be the most promis-
ing, universal application of BCI [12]. The model must
be very cautious since users are often in a different mental

state during offline calibration and online feedback [47]. Re-
searchers have recently begun exploring new types of pas-
sive, realtime BCI systems using fNIRS. Girouard et. al built
an application which altered music based on task predictions
from an fNIRS processing algorithm [17]. Solovey et al.’s
Brainput system adapted in real-time to a scenario where an
interactive human-robot system changed its state of auton-
omy based on whether it detected a particular state of multi-
tasking [46] and Peck et al. demonstrated a passive adaptive
movie recommendation system [37]. In these systems, the
brain processing algorithms typically predict the user’s men-
tal activity on a discrete, often binary scale (e.g., high vs. low
workload), which then maps one-to-one with a system adap-
tation. In the present experiment, we explore a more con-
tinuously adaptive scheme, where measures of classification
confidence provide a proxy for differentiating the degree of
multitasking.

Brain Sensing with fNIRS
Functional near-infrared spectroscopy (fNIRS) is an opti-
cal brain sensing technique that observes similar physiolog-
ical parameters to functional magnetic resonance imaging
(fMRI). Near-infrared light is sent into the forehead at fre-
quencies of 690 nm and 830 nm which enters the tissue at
depths of 1-3cm [48]. Critically, light penetrates biological
tissue and bone at these wavelengths but is absorbed by oxy-
genated (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb)
in the bloodstream [26]. Since active neurons summon and
consume oxygen, a sharp increase of blood flow [13] cou-
pled with decreased levels of deoxy-Hb and increased levels
of oxy-Hb tends to signify that a neural region at large is at
work performing meaningful computation. Because the opti-
cal properties of deoxy-Hb and oxy-Hb differ, the attenuation
of the near-infrared light at different wavelengths returning to
the sensors on the forehead describes localized brain activa-
tion.

FNIRS signals have shown resliency against head movement,
facial movement, ambient noise, heartbeat, and muscle move-
ment [44]. Relying on simple and cheap fundamental tech-
nology, fNIRS is safe, comfortable, easy-to-setup, and has
the potential for portability. The data from the device has
been used to differentiate between levels of workload [3, 25,
37, 42], verbal and spatial working memory [24], game diffi-
culty levels [16], and cognitive multitasking. Putting this data
to practical use, predictive models have been applied in real
time to adapt user interfaces to these physiological states [45,
46].

Multitasking and Cognitive Workload
Working memory has been defined as the “temporary stor-
age and manipulation of the information necessary for such
complex tasks such as language comprehension, learning
and reasoning” [4]. Repovš and Baddeley’s [41] multi-
component model and Wickens’ four-dimensional multiple
resource model [49] both regard working memory as a lim-
ited pool of cognitive resources. Even if two different tasks,
such as auditory and visual, do not interfere with each other,
they are still competing for common resources. There is no
perfect allocation of resources, and a strain on the auditory
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components of working memory affect the resources avail-
able to visual and motor components, and vice versa.

Specifically, visual search is not efficient while humans are
manipulating information held in working memory. This was
demonstrated in an experiment by Han and Kim [22] in which
participants performed a visual search task while simulta-
neously performing other tasks (counting backwards from a
digit or reordering alphabet letters). These conditions reduced
speeds in the visual search task when compared to the search-
alone condition [22]. The authors concluded that the extra
load of the additional tasks affected the working memory’s
executive processes and hindered performance in a branching
scenario.

Speed and error rate suffer when the amount of effort avail-
able for a point-and-click task is limited. Balancing accu-
racy and speed, the user’s “two concurrent minimization ef-
forts draw from a common pool of resources, and this pool
is limited” [21]. In general, multitasking refers to the act of
performing multiple tasks simultaneously in pursuit of vari-
ous independent goals. This planning strategy requires cogni-
tive resources located in different parts of the prefrontal cor-
tex [7].

However, certain types of multitasking have different neural
signatures and their activations can be distinguished. Koech-
lin et al. showed that although keeping a goal in mind over
time or alternating between goals did not lead to an increased
activation in the prefrontal cortex, this area of the brain is
responsible for the “ability to hold in mind goals while ex-
ploring and processing secondary goals.” [29] Koechlin et
al. [29] describe a particular state of multitasking, branching,
where the user must remember one or more primary goals,
while simultaneously processing and shifting between sec-
ondary goals. In Koechlin’s study, the participants’ fMRI data
exhibited significant activation in the anterior prefrontal cor-
tex when the user was branching compared to other states of
multitasking [29], and Solovey et al. demonstrated that this
branching signal is distinguishable via fNIRS [45] and can be
used to power an adaptive real-time system [46].

Because branching indicates that the user is focused on a pri-
mary task while working on a secondary goal, it is the ideal
opportunity to adapt a system to guide the user’s focus to-
ward the essential parts of a secondary goal and reduce the
total working memory load.

Based on the working memory and search task literature, we
explore if we can aid the user in working memory tasks by
adapting interaction with visual elements in a secondary task.
When the user enters a state of branching, they will not be
as efficient on the visual search task. In this circumstance, it
benefits the user to focus attention on the main elements of the
visual search. Therefore, when the fNIRS device detects ev-
idence of this neurophysiological signal, the GUI should aid
the user and focus on higher priority targets, increasing their
effective width at the expense of the lower priority targets.

FNIRS AS AN INPUT FOR MULTIMODAL TASK ADAPTA-
TIONS
In this paper, we explore the possibility of using fNIRS to
provide useful changes to the backend of a visual interface.
The main questions we sought to answer are:

• Can we use brain input to detect when a user is multitask-
ing in a challenging multimodal task?

• Can we improve user performance in an on-screen task by
using brain state without changing the visual interface?

Adaptation Mechanism: Target Expansion
We propose dynamically manipulating the size of high-
priority targets as a function of the user’s current state. Dur-
ing periods of difficult multitasking, the target size of high-
priority targets expand, making them easier to click and the
lower priority targets, in effect, comparatively evasive. Un-
der less mentally strenuous circumstances, the size of high-
priority targets returns to default settings. This manipulation
allows the user to focus on high-priority targets during criti-
cal moments, without forfeiting access to low-priority targets
during less demanding periods of work.

We introduce two important design features of adaptive target
expansion. First, unlike traditional bubble cursors, as targets
change in size, there are no changes to the visual represen-
tation of the targets. We make this design decision based
on long-standing research on the sensitivity of our percep-
tual system to movement in the visual field. Frequent, un-
predictable changes to the visual representation of the target
could disrupt the user and renders the system more sensitive
to inaccurate user classifications.

Second, we use a continuous adaptation mechanism.
Rather than modifying target size between two system states
(default target size and maximum target size) that directly
correspond with two user states, the target size may also be
anywhere between the default and maximum size, depending
on output from the user model. We believe that this design
creates a gentle, less obtrusive adaptation that is (again) less
sensitive to potential misclassifications of the user model. We
discuss the mapping of user state to target size in more detail
in our system description.

EXPERIMENT SCENARIO
In this section, we explain how we control our adaptive simu-
lation with brain-sensing, and provide evidence of its efficacy
with a user study. Using fNIRS while the user is perform-
ing a calibration task, we build a machine learning model of
what the user’s brain activation looks like during a particu-
lar multitasking state, contrasting it against different forms of
multitasking. When we detect branching multitasking during
the simultaneous tasks, we modify the bubble cursor to aid
the user in focusing on high-priority targets.

In order to test the efficacy of a system that dynamically ad-
justs target size based on passive brain input, we designed
a highly-controlled multitasking scenario that involves both
audio and visual interface tasks. The user’s goal is to maxi-
mize performance in the primary task while also completing
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Figure 1. Simulated screen captures of our three target expansion conditions, with visual indications of expanded target widths. The letters on the
bottom are the list of letters for the user to select, while the top is the visual search canvas. Although users never saw the expanded widths (indicated
by light pink outer circles), these increased widths were used to make it easier for users to select the high-priority targets in the adaptive and static
conditions. With no expansion(left), all targets have the same width. Although the users did not see these changes, we show the effects of target
expansion in the adaptive expansion condition (center), where uppercase target expansion varied according to brain measures, and static expansion
(right), where uppercase target widths were expanded by 300%.

as much of the secondary task as possible. Because there is
a performance tradeoff, we developed an adaptation with the
goal of helping the user.

The users complete a known multitasking task, the “tablet”
task, and we use a machine learning model of their cognitive
activity during this task to predict their cognitive state and
adapt the cursor while simultaneously performing n-back and
visual search tasks.

Primary Audio Task: N-Back
In order to test our system, we chose a highly controlled task
that is grounded in the psychology literature for our exper-
imental testbed. We believe this work generalizes to real-
world audio tasks that people typically engage in – communi-
cating to pilots, emergency dispatchers talking to callers, and
financial traders communicating during transactions.

A well-validated method to manipulate workload [34, 35, 40],
the n-back task served as the primary task in this experiment.
Participants performed an audio recall n-back task, which has
been shown in multiple studies to increase task demand on
a user as n increases “without requiring direct conflict with
manual control or visual processing demands” [35]. In the au-
dio n-back, participants listened to a list of single-digit num-
bers and after each number, repeated out loud the number that
they just heard (0-back), the previous number (1-back), or the
number that they heard two numbers ago (2-back). Each n-
back set consisted of 16 individual trials, with each digit (0-9)
being represented as one of the first ten digits, followed by a
sequence of six non-repeating digits.

Secondary Interface Task: Visual Search
In order to construct a controlled task that mimics time-
sensitive interface selection activity, we designed an exper-
imental secondary task based on visual search. Visual search
tasks require a combination of visual and motor skills in or-
der for users to find and select targets. In our task, users were
presented with a canvas containing both uppercase and low-
ercase letters scattered randomly across the screen, as seen in
Figure 1. At the bottom of the screen was a list of 12 letters
(6 uppercase and 6 lowercase) as well as a timer.

Participants were instructed to click on letters from the list
in sequential order. We consider the uppercase letters to be
high-priority targets that may be modified given our adaptive
strategy and the lowercase letters as low-priority targets. We
show Figure 1 as a demonstration of the target expansions, but
there was no visual indication of these changes. The width of
the lowercase letters was never explicitly affected in any of
the conditions, but occasionally decreased if they were bor-
dered by expanded uppercase targets. Participants were in-
formed that they could skip lowercase letters without penalty,
but that they must click on all uppercase letters. However,
they could not go back once they advanced in the list and
skipped letters.

Scoring
Participants performed this visual search task concurrently
with the audio n-back, and were instructed that n-back re-
sponses were worth 20 points, uppercase letters were worth
ten points, and lowercase letters were worth five points. Their
goal was to earn as many points as possible in the time al-
lowed. They were told to go as quickly and accurately as
possible and to click once the desired letter was highlighted.
After each click on a correct target, the canvas reset and shuf-
fled the locations of all the letters.

SYSTEM DESIGN
The user performs the simultaneous audio n-back and visual
search task. During this, we use machine learning to predict
the user’s multitasking state. At each screen refresh (once
the user selects a target), we use the confidence value of the
model for the last five seconds as an expansion coefficient
to increase the effective width of the uppercase letter targets.
We compare the performance in this condition to two other
controls: never expanding the target, and always completely
expanding the target.

Equipment
We used a multichannel frequency domain Imagent fNIRS
device from ISS Inc. (Champaign, IL) for data acquisition.
Two probes were placed on each participant’s forehead, as
shown in Figure 2. Each probe had four light sources, each
emitting light at 690 nm and 830 nm, and one detector. The
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Figure 2. A user with two fNIRS probes held on with a headband.

source-detector distances ranged from 1.5 to 3.5 cm and the
sensor sampling rate was 11.79 Hz.

Multitasking Calibration Task
In order to induce branching in our subjects, we repli-
cated Koechlin et al.’s multitasking experiment, which has
been shown to produce neurophysiological changes dur-
ing the branching condition measurable by both fMRI and
fNIRS [29, 45, 46]. Participants were shown a series of up-
percase and lowercase letters from the word “TABLET” and
had to respond according to different rules for the delay, dual-
task, and branching conditions.

A   B L t l e T T a A 

✓ ✓ ✓✗ ✗ ✗ ✗ ✗ 

Delay 

A   B L t l e T T a A 

✓ ✓ ✓

t? t? 

✗ ✗ ✗ 

Dual Task 
T? T? 

✗ ✓

A   B L t l e T T a A 

✓ ✓ ✓✓

t? t? 

✓ ✗ ✗ ✗ ✗ 

Branching 

✗ 

✓

Figure 3. Conditions of the tablet task. Stimuli were uppercase (red) or
lowercase (blue) letters, and participants responded according to rules
for each task.

• In the Delay condition, the user must ignore the stimuli of
a secondary task that is interrupting a primary task. Partic-
ipants ignored lowercase letters and responded if two con-
secutively presented uppercase stimuli were in succession
in the word “tablet.”

• In the Dual-task condition, the user switches tasks without
retaining any information about the previous task. Partici-
pants had to respond if two consecutive stimuli of the same
case were in immediate succession in the word “tablet.”
However, if the two stimuli were of different cases, partic-
ipants had to respond if the second stimulus was a ‘T’ or
‘t.’

• In the Branching condition, participants had to keep infor-
mation about one goal in mind while working on another.

Participants had to respond to the uppercase letters the
same as the delay condition, always remembering the last
uppercase letter. For lowercase letters, they responded the
same as the dual-task condition, answering if the two con-
secutive stimuli were in immediate succession in “tablet” if
they were both lowercase, but responding if stimulus was a
‘t’ for a change of case.

For each trial of the “tablet” task, participants viewed 11 letter
stimuli, each presented for 500 ms, with a 2500 ms period to
respond between stimuli. Participants completed 32 trials of
the “tablet” task, 16 branching and eight of both the delay and
dual-task in order to ensure that the machine learning model
had the same number of branching and non-branching tri-
als. We kept the timing of stimuli and probability of a match
identical to Koechlin et al., and ran the trials in random order.
Although each trial was 33 seconds, we classified brain data
on the first 15 seconds of brain data. A pilot study (n=8) us-
ing the same task suggested that we could achieve similar or
better accuracy using a short period for classification. There
was a 15 second rest period between trials in order to allow
the brain to return to its resting state, and participants were al-
lowed to take a break after every ten trials. Although each par-
ticipant had an individual model, the overall trends are shown
in Figure 4. Our data logs, as well as Koechlin and Solovey’s
studies [29, 45], show strong similarities between the perfor-
mance metrics for branching and dual-task conditions (while
the control task is much easier), but the brain activation pat-
terns for the branching task are differentiable from the dual-
task and control task (which are similar). Therefore, for our
machine learning model, we distinguish branching from non-
branching signals (delay + dual-task).

FNIRS Signal
During the tablet task, raw fNIRS data was collected by Boxy
(software from ISS, Inc.) and sent to a specialized analysis
system which was built in-lab using MATLAB. There, the
system calculated the time series of change in fNIRS data
over individual trials for each information channel (2 probes
x 4 light sources x 2 wavelengths), labeling them as examples
of either branching or non-branching. The signals were fil-
tered for heart rate, respiration, and movement artifacts using
a third-degree polynomial filter and low-pass elliptical filter.
In the past, this process has been used to support other real-
time fNIRS adaptive systems [1, 2, 37, 46].

Machine Learning Model
We constructed a model for the user multitasking states
branching vs. non-branching (delay and dual-task), as
Solovey et al. 2012 had also done. In order to determine user
state, we built a machine learning model based on prefrontal
cortex activation signals during the calibration task.

For each of the 32 “tablet” task trials, we calculated the mean
and slope of the change in the light intensities for each of the
8 source-detector pairs at two different wavelengths. Thus,
each trial consisted of 32 features.

We labeled each of these examples as branching or non-
branching and fed them to LIBSVM, a support vector ma-
chine classification system [8]. Per the recommendation of
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Cui et al. [10], we used a linear kernel to prevent overfitting
the data and did a parameter search to find the best combina-
tion of C and γ parameters for each user.

We used ten-fold cross-validation to ensure that the model
was accurate, and we did not use data from two participants
that could not be accurately modeled (cross-validation accu-
racy of less than 50%).

For testing, the LIBSVM model received an input example
and provided both a classification and a confidence measure
(probability estimate) between 50% and 100%. This allows
us to receive predictions of intermediate states instead of just
0% and 100%.

Change in Oxy-Hb during Branching vs. Non-Branching
Trials
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Figure 4. Although we model each participant individually, the fNIRS
signal exhibited general trends as participants interacted with the
branching and non-branching task. Plotting the mean change in oxy-Hb
across all training trials and all participants (16 trials * 12 participants)
shows that higher levels oxy-Hb correlate with the branching task. The
standard error of the mean is shown with the width of the plots.

Adaptation Trigger and Design
The machine learning classifier provided a prediction every .5
seconds based on the last 15 seconds. We merged predictions
from an overlapping sliding window of five seconds (with 4.5
seconds of overlap), computing the average certainty levels
of the branching state. This means that the system used the
average of the last ten classifications, discarding the oldest
classification every time it received a new one. This measure
directly controlled the uppercase letter target expansion: from
no expansion up to three times the original target radius. The
expansion radius changed only after each user click to avoid
inconsistent cursor behavior.

EXPERIMENT DESIGN AND PROCEDURE
We ran 12 participants (five female) between the ages of 19
and 31. All participants were right-handed, native English
speakers with no history of brain damage or disease and had
normal or corrected-to-normal vision. Participants were paid
for their time and incentivized with a performance bonus for
their overall score. All participants were trained to profi-
ciency on the tasks before testing.

Participants were tasked with simultaneously completing au-
dio n-back and visual search tasks. Because of incentives

in the point system, they considered the audio n-back their
primary task and the visual search task their secondary task.
We expected that the completely expanded targets would aid
them to click during times of multitasking but would hinder
the user in clicking in other situations.

Although we manipulated n-back difficulty level, the pri-
mary independent variable under investigation was the level
of adaptation of system:

• no expansion: we use a standard area bubble cursor and
no expansion of the uppercase letters. The cursor always
selects the nearest target.

• static expansion: we expand the uppercase (priority) tar-
gets by three times the original radius and fix its size for
the entire trial.

• adaptive expansion: the size of the uppercase targets in-
creases and decreases as a function of the classifier’s con-
fidence that the user was in a branching state.

We expect that a brain-based target expansion will aid the
user in clicking uppercase letters compared to the control con-
dition of no adaptation, but the target expansion techniques
leave less activation area for the lowercase letters, so the mean
time to select lowercase letters will increase. We expect that
these results will be extreme for the static condition, where
users will be able to select uppercase targets the most quickly,
but take the most time to select lowercase letters.

We also modified the difficulty of the primary task (the au-
dio n-back) between 0-back (easy), 1-back (medium), and 2-
back (hard). Thus for each adaptive condition, participants
simultaneously performed nine consecutive audio n-back tri-
als (three 0-back, 1-back, and 2-back trials) and fourteen vi-
sual search trials. Each audio n-back lasted 40 seconds with a
three second break, totaling 6 minutes and 27 seconds. Partic-
ipants were given 25 seconds for each visual search task with
a three second break, totaling 6 minutes and 32 seconds. Par-
ticipants were told that the mouse cursor might sometimes be
more attracted to uppercase letters in order to help them focus
on the higher priority visual targets.

Before experimentation, a set of stimuli for the audio n-back
and visual search tasks were randomly generated. This set
was used for each participant and the order that tasks were
presented was counterbalanced. In addition, the visual search
tasks were designed so that there would be no overlap be-
tween targets, regardless of expansion.

Dependent Measures
In order to evaluate the interaction between adaptive tech-
niques and multitasking condition, we recorded the following
dependent measures:

• N-back accuracy rate: the percentage of correct answers
in the primary audio n-back task. Participants gave 135
n-back responses per condition.

• Number of targets selected: the average number of targets
that the user selected, out of 168 targets (84 uppercase, 84
lowercase).
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Figure 5. Movement time for uppercase letters by expansion condition.

• Combined score: the average score the user achieved, as
measured with the weighted points system. The maximum
total score was 3960 points.

• Movement Time: the average amount of time it took be-
tween target selection.

• Target acquisition error rate: the percentage of clicks that
missed the target.

We hypothesize that if we can improve performance on the
visual task by improving target selection and focusing on only
high-priority targets when the user is busy, the audio n-back
accuracy rate should remain constant or improve since the
user will have extra cognitive resources.

RESULTS

Task Performance Results
A Kolmogorov-Smirnov test showed that there was a normal
distribution of the data. We found that users performed bet-
ter on both tasks with the adaptive condition compared to
the other two conditions. With a two-way ANOVA, there
were significant main effects of target expansion condition,
F (2, 10) = 4.24, p < .05, and n-back condition, F (2, 10) =
49.14, p < 0.001 on the total number of correct n-back re-
sponses. A Tukey’s pairwise comparison revealed that the
adaptive condition significantly outperformed the static con-
dition (p < .001). We also found significant main effects
of target condition, F (2, 10) = 5.62, p = 0.001 and n-back
condition, F (2, 10) = 165, p < 0.01 on the total number
of correct target clicks, and a Tukey’s pairwise comparison
analysis showed that the adaptive condition significantly out-
performed both no expansion (p < .05) and static (p < .05).
This also yielded a significant total difference on total score
(p < .005), with adaptive again outperforming no expansion
(p < .05) and static (p < .05) conditions.

Users performed better on both tasks when we adaptively
throttled the expansion of targets, but actually performed
worst when they received the expansion for the entire trial.

Figure 6. Points by expansion condition. Participants earned 20 points
for each correct audio n-back response, while simultaneously earning
ten points for each uppercase letter they clicked on and five points for
each lowercase letter.

Speed and Accuracy Results
We found significant differences between conditions for av-
erage movement time across trials. Mauchly’s test showed
a violation of sphericity against Group (W (2) = 0.26, p <
0.01). We ran a one-way repeated-measure ANOVA and
made Greenhouse-Geisser correction (ε = 0.57). It revealed
a significant effect of target condition on movement time (in
seconds), F (2, 10) = 6.99, p < 0.005. A Tukey’s pair-
wise comparison revealed significant differences between the
adaptive and static conditions (p < 0.01) movement times
as well as between the no expansion and static adaptation
tasks (p < 0.1). We also used a two-way repeated-measure
ANOVA and found a significant effect of n-back condition
(p < .001) on movement time and a significant target expan-
sion X n-back interaction on time (p < .05), with all three
n-back conditions having significant differences (p < .001).

A further analysis of movement time revealed that there
was a significant difference across expansion (F (2, 10) =
2.24, p < .05) and n-back conditions (F (2, 10) = 25.45, p <
.001) in movement time for uppercase letters, as shown in
Figure 5. The Tukey’s pairwise comparison showed that
adaptive expansion outperformed the no expansion (p < .05)
and static expansion conditions. In addition, movement time
in the no expansion condition was significantly better than
the static condition. There was no significant difference in
expansion condition across lowercase letter movement times.

These results indicate that movement time actually becomes
worse when we uniformly apply target expansion to the up-
percase letters, but improves if we only do it when the user is
in a state of branching.

Because bubble cursor ensures that a user always clicks on a
target, we found the hit rate for all three conditions extremely
high. There was no significant difference between expansion
conditions in the 0-back and 1-back task, but we used a one-
way ANOVA and found that in the 2-back, there was a signif-
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Measure No Expansion Adaptive Expansion Static Expansion
N-back accuracy rate 90.4% 91.7% 87.97%
Number of targets selected (uppercase) 116.5 (66.9) 122 (67.7) 114.58 (66.2)
Combined score (points) 3358.75 3423.33 3278.75
Movement time - total (s) 2.55 2.49 2.63
Movement time - uppercase (s) 2.47 2.37 2.55
Movement time - lowercase (s) 2.60 2.59 2.70
Target acquisition error rate 1.63% 1.52% 2.80%

Table 1. Average results by expansion condition. All of these measures were significant (p < .05) across expansion condition and n-back condition
except for movement time for lowercase targets and target acquisition error rate.

icant effect of condition (F (2, 10) = 2.24, p < .05). Similar
to Grossman and Balakrishnan, we choose not to do a full
speed-accuracy analysis because our hit rates were well be-
low the standard 4% error rate used to calculate target effec-
tive width in other target acquisition studies.

The index of difficulty across conditions was insignificant
across target and n-back conditions, showing that participants
performed roughly the same difficulty of task across condi-
tions. We also looked at distance traveled, throughput (the
ratio of index of difficulty to movement time), and path met-
rics, but did not find any differences across conditions. In
addition, we found no learning effect either within trials of a
condition or across conditions.

DISCUSSION
These results suggest that participants were able to perform
more critical work with a higher accuracy rate in a brain-
based target adaptive expansion system than in a standard
bubble cursor interface. Our results show that we could cre-
ate a continuous level of adaptation with only implicit, non-
visible assistance.

Although bubble cursor already shows large improvements
over standard point cursors, we found additional performance
increments using brain input to control target expansion for
bubble cursor. Using expansion at the correct times helps
users by an average of 60 milliseconds per click (100 mil-
liseconds for high-priority targets). As expected, we find
that performance increases when the user is selecting a high-
priority target, but we are able to do this without a nega-
tive impact on low-priority targets. Although these slight in-
creases are not dramatic, in a repeated task such as target ac-
quisition, over time they can yield powerful changes in user
capabilities. In addition, the user does slightly better in the
primary audio task, which may indicate that the user is de-
voting less resources to the visual interface. Because of these
gains, we see that the user is able to select an extra 5.5 targets
on average. This means that the user is able to take advantage
of the pointing performance increases and select more targets.

Although a calculated level of expansion helps the user, a con-
stant maximum expansion actually impedes performance in
both tasks. While we expected the static expansion condition
to aid in acquisition of uppercase targets, we see that it only
helps during low workload conditions and actually performs
worst of all three conditions in the 2-back condition. We hy-
pothesize this is due to the user spending extra cognitive and
visual resources trying to figure out the limits of the target. In

addition, although there is almost no difference between the
other two conditions in selecting lowercase letters, the static
expansion fares far worse in selecting lowercase letters.

From our results, it is clear that target adaptation alone is not
enough to incite task improvements, but this adaptation must
be judiciously applied, taking effect only when the user is
dividing mental focus.
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