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In the field of Human-Computer Interaction researchers are
challenged to find new and objective metrics for the measurement of
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challenged to find new and objective metrics for the measurement of
mental workloads. These metrics should eventually substitute the
Usability Testing which is a qualitative survey currently carried out at
the end of designed experiments where the subjects interact with a
computer interface. The long term goal is to build adaptive user
interfaces based on objective measures of mental workloads as a
passive input to provide real-time information on the user’s state.
Adaptive computer interfaces can be useful both in daily settings and
also as adjuvant for impaired subjects. Electroencephalography
(EEG) has shown some potential for the classification of mental
workloads [1, 2]. Typical scores for the discrimination of low against
high and medium against high mental workloads are around 95%,
80%, respectively [1]. However while EEG looks promising in a
controlled laboratory setting, it suffers of some drawbacks when it is
translated in daily settings, due to long preparation times required to
place the electrodes (on average 45 minutes) and sensitivity to
motion and noise artifacts. Recently functional near-infrared
spectroscop (fNIRS) has been sed for the discrimination of mental
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spectroscopy (fNIRS) has been used for the discrimination of mental
workloads [3-6]. fNIRS offers some advantages in terms of portability
and insensitivity to motion artifacts. In this work we describe recent
advances in the implementation of a real-time system which uses
machine learning algorithms and some tools of correlation analysis
in order to distinguish levels of mental workloads.

In order to find new valuable metrics for discriminating brain states,
especially the difference between an “activation”state and a “rest”
state, we have used Pearson coefficient and the concept of phase
synchronization of chaotic oscillators [7] applied to low frequency
spontaneous oscillations (LFO), that is around 0.1 HZ. These two
parameters are used in the attempt to distinguish between rest and
mental workloads during a cognitive task involving the working
m mor Th roto ol o i t i 12 blo k of 60 h di id d
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memory. The protocol consists in 12 blocks of 60 sec each, divided
in 6 blocks at “workload 4”(WKL4) and six block at “workload 0”
(WKL0). During the first 30 sec of WKL4 the subject is looking at a
rotating cube and trying to memorize how many sides of each colors
(4 colors) are present. During the remaining 30 sec the subject is
recovering. During WKL0 a uniformly grey cube is rotating and the
subject is resting. We have found some discriminatory power
(between WKL0 and WKL4) by using the Pearson coefficient;
however even if the phase synchronization index (PSI) yielded
another type of usable metrics, we are still in the process to extract
information from this method. However this investigation confirmed
that correlation analysis and phase synchronization analysis provide
different information. We have also made progress for the realization
of a software system that allows for real time fNIRS brain signal
analysis and machine learning classification of affective and
workload states called the Online fNIRS Analysis and Classification
system (OFAC). This system receives and processes brain signals
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Where s(t) is either
the filtered Δ[HbO] or Δ[Hb]

Analytic Signal of a signal s(t)

We calculate an histogram 
Of the different values of Δφ

and event markers, automatically recognizes the current cognitive or
affective state using a database of previously recoded signals and
machine learning techniques, and outputs this state to the interface,
allowing for the creation of interfaces that adapt and change in real
time according to traditional inputs as well as cognitive activity.
OFAC offers the user an additional communication channel based
on brain activity, providing multimodal interaction.
Our work with the OFAC system aimed at reproducing the
procedures used offline in previous work [6], adapting them to be
suitable for real time input to a user interface. A first study compares
a previous offline analysis with our real time analysis to test and
prove the system’s reliability and potential .The high accuracy found
during real time analysis (82.0%), compares well with the value
foundduring offline analysis 94.4%.
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Phase synchronization index (PSI) between Δ[HbO] and Δ[Hb]  
Entropy of the distribution of
Δφ: Pi = Δφi

Ln(N) is the largest value of Entropy, obtained for 
a uniform distribution
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The use of fNIRS in typical computer settings  
OFAC system’s architecture. 
OFAC provides both online and offline data analysis 

We have used correlation analysis tools in order to distinguish brain
activation from rest state. The motivation of this choice is that
correlation analysis are based on the change of spatio-temporal
patterns of low and very low frequency spontaneous oscillations
associated with activation. Therefore they can provide a non
localized signature of the activation state. Pearson coefficient has
shown some potential in distinguishing between two mental
workloads that involve working memory; phase synchronization
defines a different kind of usable metrics which we are still
investigating. We are currently exploring the change in phase
synchronization in block in sections of the signals which might
provide some missing information. We have also implemented an
online classification of mental states procedure based on machine
learning algorithms, which they show their superior discriminating
power.

NS059933; CIMIT/U.S. Army Medical Acquisition Activity
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the game for a period of thirty seconds and rested for
thirty seconds to allow their brain to return to baseline

The first 12 examples (or more) in the training
set produces a stable average accuracy of approximately
82%

Schematic of Pacman game Comparing the real time and offline 
classification accuracy for each participant 


