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ABSTRACT
We show how brain sensing can lend insight to the evalua-
tion of visual interfaces and establish a role for fNIRS in vi-
sualization. Research suggests that the evaluation of visual
design benefits by going beyond performance measures or
questionnaires to measurements of the user’s cognitive state.
Unfortunately, objectively and unobtrusively monitoring the
brain is difficult. While functional near-infrared spectroscopy
(fNIRS) has emerged as a practical brain sensing technology
in HCI, visual tasks often rely on the brain’s quick, mas-
sively parallel visual system, which may be inaccessible to
this measurement. It is unknown whether fNIRS can distin-
guish differences in cognitive state that derive from visual de-
sign alone. In this paper, we use the classic comparison of bar
graphs and pie charts to test the viability of fNIRS for mea-
suring the impact of a visual design on the brain. Our results
demonstrate that we can indeed measure this impact, and fur-
thermore measurements indicate that there are not universal
differences in bar graphs and pie charts.
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INTRODUCTION
The quantitative evaluation of visual interfaces has been a
significant goal of both the HCI and visualization commu-
nity for decades. Numerous quantitative and qualitative ap-
proaches have been proposed to peek into the user’s cognitive
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processes during interaction. Nevertheless, there are limita-
tions to evaluating performance in a visual interface without
directly monitoring the brain’s cognitive processes. Evalua-
tions of basic tasks may not generalize to complex tasks us-
ing the same visual forms (i.e. bar graphs and pie charts [6,
28, 32]), and psychology research suggests that evaluating
performance without workload may lead to incorrect conclu-
sions about the cognitive efficiency of an interface [3, 17, 23,
40]. Finally, cognitive state can change even as performance
remains stable, meaning that performance metrics may not
always accurately reflect cognitive processes [7, 37].

As a result, there has been a renewed interest in objective
methods to evaluate cognitive processes during interaction
with a visual interface [1, 26]. In particular, functional near-
infrared spectroscopy (fNIRS) (Figure 1) has received in-
creased attention as a lightweight brain sensing technology
in HCI because in comparison to other brain sensing meth-
ods, it is portable [36], resistant to movement artifacts [19],
and observes similar physiological parameters to fMRI [5, 35,
39]. While previous fNIRS experiments in HCI have studied
cognitive state at various stages of interaction [2, 12, 15, 16,
29, 31], these experiments largely omit a critical component
of interface design: How do different visual designs and in-
terfaces affect the user’s ability to perform visual judgment at
a cognitive level?

The potential of using fNIRS to inform the design of inter-
active interfaces for visualization is appealing. If fNIRS can
successfully measure the impact of visual design on the user,
then it can provide access to physiological parameters that
have not previously been analyzed in this context. Further-
more, it can do so in ecologically sound settings that allow
users to interact naturally with an interface [30].

However, there are concerns as to whether fNIRS may be ca-
pable of monitoring brain activity in these scenarios. The
physiological parameters which fNIRS monitors (oxygenated
and deoxygenated hemoglobin) typically peak 5-7 seconds
after interaction, meaning that the signal is slow-moving in
comparison to the massively-paralleled processes employed
by the brain’s visual system. In addition, tasks that leverage
the perceptual system may not induce measurable activity in
the prefrontal cortex (PFC), the area of the brain most com-
monly monitored by fNIRS.



Figure 1. Left: An fNIRS probe with four light source and one light
detector. Right: Two fNIRS probes are secured on a participant’s fore-
head using a headband.

In this work, we test the viability of using fNIRS to observe
how visual design modifies brain activity in complex tasks.
We conducted three experiments to (a) examine how partic-
ipants process bar graphs and pie charts differently in their
brains, (b) determine the efficacy of using fNIRS as a tech-
nique for evaluating mental workload in visual tasks, and (c)
classify visual tasks that are most suited for using fNIRS in
evaluation.

To investigate this, we employ a classical comparison in the
field of visualization - bar graphs and pie charts - and ask
users to perform a difficult task on the information contained
in those graphs. Based on our results, we make three contri-
butions:

• Our findings suggest that fNIRS can be used to moni-
tor differences in brain activity that derive exclusively
from visual design. We find that levels of deoxygenated
hemoglobin in the prefrontal cortex (PFC) differ during in-
teraction with bar graphs and pie charts. However, there
are not categorical differences between the two graphs.
Instead, changes in deoxygenated hemoglobin correlated
with the type of display that participants believed was more
difficult. In addition, participants reacted differently to pie
charts and bar graphs at a cognitive level, but exhibited the
same performance characteristics.

• We propose that the fNIRS signals we observed indicate
the amount of cognitive workload induced by interact-
ing with a visual interface. We conducted an experiment
that compares brain activity observed in bar graphs and pie
charts with activity from a visuospatial n-back task - a well-
characterized task from the psychology literature for mod-
ifying load on working memory. Our results are consistent
with the existing fMRI literature and agree with participant
response data (NASA-TLX), indicating that fNIRS signals
correlate with cognitive workload.

• We discuss the benefits of using fNIRS for evaluating vi-
sual design and conduct an auxiliary study to identify the
limits of using fNIRS in perceptually driven tasks. We
find that fNIRS can provide insight on the impact of vi-
sual design during interaction with difficult, analytical
tasks, but is less suited for simple, perceptual compar-
isons.

BACKGROUND

Brain and Body Sensing in Visualization Evaluation
As Fairclough [10] points out in his seminal review, physi-
ological sensing in HCI has the advantage of having higher
temporal fidelity in that it can access data at any time. In

contrast, post-hoc questionnaires or recordings of observable
behaviors represent discrete and sporadic events that reflect
aggregated opinions about a whole experience.

While the field of HCI has seen an increased acceptance of
physiological sensing in evaluation, to date, this push has
not translated to the evaluation of visual interfaces and vi-
sual form. Historically, recording behavioral metrics or ad-
ministering questionnaires have been used to evaluate visual
design. However, Riche [26] notes that the exploratory nature
of tasks in infovis systems, coupled with the “the difficulty to
decompose [them] into low-level and more easily measured
actions” makes analysis problematic. To overcome some of
these obstacles, Riche proposes the use of physiological mea-
sures to evaluate visual interfaces.

Unfortunately, to our knowledge, there have been only two
significant attempts to explore this space. Investigating the
impact of visual variables on heart rate, galvanic skin re-
sponse (GSR), and respiratory rate, Causse and Hurter found
that interactions with text v. angle-based visual forms elicited
different signals with GSR [4]. Few other significant inter-
actions were observed. Work by Anderson et al. is the most
promising example of using physiological signals to evalu-
ate visual interfaces [1]. They used electroecephalography
(EEG) to determine that the canonical box plot requires less
extraneous load (i.e. the additional load placed on users by
the design of a task) than various other box plot designs [1].

However, there are notable caveats to the use of EEG. While
EEG has a high temporal resolution, it also has a low spa-
tial resolution, meaning that the origin of recorded electrical
activity is difficult to locate. Additionally, EEG has tradition-
ally been considered to be extremely sensitive to movement
artifacts, although recent developments have lessened this is-
sue [24].

Brain Sensing with FNIRS
An alternative technology to objectively monitor activity in
the brain is functional near-infrared spectroscopy (fNIRS), an
optical brain sensing device that has the potential to lend in-
sight to visual interactions [5, 36, 39].

fNIRS uses near-infrared light to measure concentration and
oxygenation of the blood in the tissue at depths of 1-3cm [36].
Light is sent into the forehead in the near infrared range (650-
900 nm), where it is diffusely reflected by the scalp, skull,
and brain cortex. At this wavelength, oxygenated and deoxy-
genated hemoglobin are the primary absorbers of light. A
very small percentage of the light sent into the head returns
from the cortex to the detector on the fNIRS probe. By mea-
suring the light returned to the detector, researchers are able
to calculate the amount of oxygen in the blood, as well as the
amount of blood in the tissue. Since changes in blood flow
and oxygenation indicate activation levels in the brain we can
use fNIRS to measure activity in localized areas of the brain.

In general, fNIRS is quick to set up and more tolerant of
user movement than other brain sensing techniques such as
fMRI or EEG - a critical feature for ecologically valid eval-
uation [30, 35]. Investigating the use of fNIRS in user stud-
ies, Solovey et al. [30] found that mouse-clicking, typing, eye



Figure 2. An example bar graph and pie charts from Cleveland and
McGill’s comparison task. Participants were asked to make a percent-
age estimation of the smaller section, marked by a red dot, with the
larger section, indicated by a black dot.

movement, and blinking do not disrupt the fNIRS signal. Ad-
ditionally, minor head movement, respiration, and heartbeats
are correctable, as they can be filtered out using known signal
processing techniques. Only major head and forehead move-
ment (which could be induced by frowning) are disruptive to
the signal [30].

FNIRS readings have been validated against fMRI and the
device is sensitive to physiological parameters that are not
accessible by other brain sensing techniques [35]. Because it
measures the relatively slow hemodynamic response of blood
to the brain (5-7 seconds), fNIRS has a slow temporal reso-
lution in comparison to EEG, which indirectly measures the
electric activity of the brain. However, this light-based sens-
ing technique allows fNIRS to have a spatial resolution of 1-
3cm, which is much sharper than EEG (although less precise
than fMRI).

As a result, fNIRS has seen increased use for research in HCI
as a complementary device to EEG [12]. Hirshfield et al. [16]
used fNIRS to create a novel experimental protocol to explore
the mental workload of users. They then used that protocol
to measure the syntactic workload of users while interacting
with two different interfaces. One of the most recent exam-
ples is from Solovey et al. [29, 31], who explored the use
of fNIRS in designing adaptive interfaces to support multi-
tasking. This led to the system Brainput which can identify
different brain signals occuring naturally during multitasking
and use these to modify the behavior of the interface [29].
FNIRS has also been used to monitor workload changes in
air traffic control tasks and piloting a virtual unmanned aerial
vehicle (UAV) [2].

These studies have been important in the development of
fNIRS within HCI. However, the cognitive effects of different
visual displays on the user is a yet unexplored area.

Pie Charts and Bar Graphs
We chose the visualization of bar graphs and pie charts as a
suitable testbed for monitoring the user’s cognitive processes
because it is a familiar, well-studied comparison in the field of
information visualization. In this section, we briefly outline
the body of research that studies interaction with bar graphs
and pie charts.

In Cleveland and McGill’s ranking of visual variables, par-
ticipants were presented with either a bar graph or pie chart
(Figure 2) and asked to estimate the proportion percentage
of a smaller value in the graph to a larger value [6]. Their

results indicated that position judgments (bar graphs) facili-
tated more accurate visual comparisons than angle judgments
(pie charts).

However, Simkin and Hastie found that pie charts and bar
graphs performed equally well in part-to-whole compar-
isons [28]. Spence and Lewandowsky demonstrated that pie
charts perform reasonably well in a direct comparison with
other basic visual forms [32]. In more complex tasks - when
comparisons consist of combined proportions (A+B v. C+D)
- pie charts can outperform bar graphs [34]. For a more exten-
sive history of the pie chart, see Spence’s article “No Humble
Pie: The Origins and Usage of a Statistical Chart” [33].

Recently, there have been a handful of studies that utilize
Cleveland and McGill’s comparison as a baseline to investi-
gate various dimensions of interaction. Heer et al. replicated
Cleveland and McGill’s experiment using Mechanical Turk,
demonstrating that “crowd sourcing” is a viable mechanism
for graphical perception experiments [14]. Using pie charts
and bar graphs, Hullman et al. showed that social factors can
influence quantitative judgments [18]. For example, showing
a user a histogram of previous responses to a visual compar-
ison would dramatically skew the user’s own judgment. Fi-
nally, Wigdor et al. explored the impact of distortion on angle
and position judgments in tabletop displays. They found that
varying the orientation of the display surface altered visual
comparisons [38].

Despite the sizable body of research that has investigated
bar graphs and pie charts, these studies also indicate that as
the task or environment change, performance differences be-
tween the two forms become less clear. Therefore, we find
this familiar comparison to be a sufficient baseline for objec-
tively exploring users’ cognitive processes with fNIRS.

RESEARCH GOALS
Our primary goal in this work was to investigate the viability
of using fNIRS to evaluate visual design by having partici-
pants perform the same complex task on both bar graphs and
pie charts. We theorized that in a complex task, bar graphs
and pie charts would support the cognitive processes of the
user differently. Thus, our principal hypothesis was as fol-
lows:

• Hypothesis: We will observe different brain signals during
interaction with bar graphs and pie charts, indicating that
bar graphs are easier to use.

Depending on the outcome of our experiments, our secondary
goal was to further specify the use of fNIRS in visualiza-
tion research. First, we compared fNIRS signals from par-
ticipants in a well-established psychology task (n-back task)
to those observed in bar graphs and pie charts. We combined
those observations with previous fMRI literature and partic-
ipant survey responses to surmise the underlying cognitive
processes associated with our fNIRS signal. Additionally, we
performed an auxiliary study using simple comparisons on
bar graphs and pie charts to identify a lower bound for us-
ing fNIRS in visualization research. We present these results
below, after the main experiment.



Figure 3. In our modified comparison task, participants compare a slice
in the current pie chart to a slice from the previously seen pie chart.

In the following sections, we outline the methodology used
for our bar graph v. pie chart experiment, discuss the results
of that experiment, and finally, generalize our study to visu-
alization research.

METHODS
Although originally inspired by Cleveland and McGill’s clas-
sical position v. angle experiment, we modified the complex-
ity of their task in order to reconstruct the memory-intensive,
analytical reasoning that is performed on high-performance
visual interfaces. For that reason, we modeled our task
loosely after the n-back task, a well-characterized psychol-
ogy task that is meant to increase load on working memory.

In this task, participants were presented a series of slides,
each displaying either a bar graph or pie chart, to view se-
quentially. They were instructed to estimate the size differ-
ence to the nearest ten percent of a smaller section of the
graph (marked by a red dot) in the current slide to a larger
section (marked by a black dot) in the previous slide. Esti-
mates were entered using a single keystroke on the keyboard
(‘1’ for 10 percent, ‘2’ for 20 percent, etc). Figure 3 shows
an example of three slides using the pie chart condition.

Each trial lasted 40.7 seconds and consisted of 11 slides (or
10 comparisons with the previous slide), with each slide being
presented for 3.7 seconds. Participants viewed 8 trials where
the task depended on bar graphs and 8 trials where the task
depended on pie charts. Trials were shown in random order.

To construct the graphs, 88 datasets (8 trials x 11 slides) were
randomly generated at the time of the experiment using the
same constraints as those outlined in Cleveland and McGill’s
classical angle v. position experiment. Accordingly, the
same datasets were used for both bar graphs and pie charts.
Comparisons were chosen at run-time by randomly selecting
one of the largest two graph elements in the current slide
and one of the smallest three elements in the next slide.
This final constraint was necessary to guarantee that the two
marked segments of each graph would not overlap and that
percentage estimates would not exceed 100%.

Measures
Questionnaire: NASA TLX
We used an unweighted NASA-TLX questionnaire [20], a
subjective rating that has been successfully used to capture
workload since the 1980s [13]. The questionnaire collects six
components of workload - mental demand, physical demand,
temporal demand, performance, effort, and frustration. In to-
tal, we collected two surveys reflecting the two conditions -
bar graphs and pie charts. We focus primarily on the ques-
tionnaire’s mental demand dimension.

Brain Sensing: fNIRS Signal Analysis
We used a multichannel frequency domain OxyplexTS from
ISS Inc. (Champaign, IL) for fNIRS data acquisition. Two
fNIRS probes were placed on the forehead in order to mea-
sure the two hemispheres of the PFC (Figure 1). The source-
detector distances were 1.5, 2, 2.5, and 3cm. Each dis-
tance measures a difference depth in the cortex. Each source
emits two light wavelengths (690 nm and 830 nm) to de-
tect and differentiate between oxygenated and deoxygenated
hemoglobin. The sampling rate was 6.25Hz. For each of the
two fNIRS probes, we selected the fNIRS measurement chan-
nels with source-detector distances of 3cm, as the light from
these channels is expected to probe deepest in the brain tissue,
while the closer channels are more likely to pick up systemic
effects and noise.

To remove motion artifacts and optical changes due to res-
piration and heart beat we applied a folding average filter
using a non-recursive time-domain band pass filter, keeping
frequencies between 0.01Hz and 0.5Hz. The filtered raw
data was then transformed into oxygenated hemoglobin and
deoxygenated hemoglobin concentrations using the modified
Beer-Lambert Law [5]:

∆A = ε×∆c× d× B (1)

where ∆A is the change in attenuation of light, ε is the molar
absorption coefficient of the absorbing molecules, ∆c is the
change in the concentration of the absorbing molecules, d is
the optical pathlength (i.e., the distance the light travels), and
B is the differential pathlength factor. The attenuation of light
is measured by how much light is absorbed by oxygenated
and deoxygenated hemoglobin (which are the main absorbers
of near infra-red light at these wavelengths). As the atten-
uation of light is related to the levels of hemoglobin, given
∆A, we can derive the changes in the levels of oxygenated
and deoxygenated hemoglobin [5]. Finally, to remove noise
artifacts, we smoothed the data by fitting it to a polynomial of
degree 3 and applied a low-pass elliptical filter [31].

Performance: Speed and Accuracy
We logged all key-strokes and response times. We defined
response time as the number of milliseconds from a graph’s
appearance to the final keystroke (user judgment) before the
next graph. For accuracy, we used Cleveland and McGill’s
log absolute error measures of accuracy [6]:

error = log2(|judged percent− true percent|+ .125) (2)



Figure 4. In a user study involving bar graphs (blue) and pie charts (green), we found that a group of participants that subjectively rated bar graphs
as more mentally demanding than pie charts (left) exhibited reserved fNIRS signals from those who rated pie charts as more mentally demanding
than bar graphs (right). The differences between signals in each graph demonstrate that brain sensing with fNIRS can monitor neural activity derived
exclusively from visual. The plots represent the mean change in deoxygenated hemoglobin across all trials of each condition. The width of the line
represents the standard error at each time point.

Experimental Design
16 participants took part in the study (7 male, 9 female). Par-
ticipants had a mean age of 20 years (SD 2.4) and were incen-
tivized $10 for participation. The study used a within-subjects
design. All participants completed a fifteen minute bar graph
v. pie chart task in which the independent variable was the
data visualization technique: bar graphs, pie charts. Partici-
pants also completed a fifteen minute visuospatial n-back task
in which the independent variable was the number of slides
the participant needed to remember at once: 1-back, 3-back
(we discuss the results of this experiment in our investigation
of fNIRS signals and workload). At the conclusion of each
section, participants completed an unweighted NASA-TLX
questionnaire for each condition. The order of sessions (n-
back, angle vs. position) was counterbalanced and the order
of conditions (1-back vs. 3-back, bar graph vs. pie chart) in
each session was randomized. The study was conducted in a
lab setting, with stimuli presented on a single monitor under
controlled lighting conditions.

RESULTS
For the purpose of analyzing the fNIRS signal, we calculated
the mean change in deoxygenated hemoglobin (∆Hb) across
the duration of each trial (omitting the first 10 seconds1) for
each participant as shown in equation (3):

∆Hb =

∑n
t=0(Hbt −Hb0)

n
(3)

where n is the number of time-points, Hb0 is the level of de-
oxygenated hemoglobin at the first recorded point (time zero),
and Hbt is the level of deoxygenated hemoglobin at time-
point t of a trial. The change in deoxygenated hemoglobin
(∆Hb) is calculated by subtracting Hb0 from the level of
deoxygenated hemoglobin at each time-point t. This is one
of many techniques that have been used in the fNIRS liter-
ature to evaluate changes in oxygenated and deoxygenated
1Omitting the first 10 seconds of the trial is due to the delayed phys-
iological response of sending oxygen to the brain

hemoglobin [2]. While there may be boundary cases in which
this measure is not sensitive to differences between signals, in
this case, it captures the clear distinction between conditions.

fNIRS Signal: Bar Graphs v. Pie Charts
Addressing our initial hypothesis, we found no significant
differences in deoxygenated hemoglobin between the bar
graph (M = −.0292, SD = .0471) and pie chart (M =
−.0249, SD = .0679) conditions (t(15) = −.280, p =
.784). Contrary to our initial belief, these results indicate
that there were no categorical differences in brain activity be-
tween the two visual forms. However, during the examination
of data from NASA-TLX questionnaires, we encountered an
interesting trend. In this section, we discuss and analyze this.

NASA-TLX Results
Isolating the mental demand dimension of the NASA-TLX
survey, we found that 7 out of 16 participants believed pie
charts to be more mentally demanding than bar graphs while
an additional 7 participants expressed that bar graphs were
more mentally demanding than pie charts (a remaining 2 par-
ticipants found the graphs to require equal amounts of men-
tal effort). These responses were largely unexpected, as our
hypothesis indicated that we would likely find a categorical
difference between bar graphs and pie charts. For the sake
of clarity, those who thought pie charts to be more mentally
challenging will be referred to as pie high demand and those
who thought bar graphs to be more mentally demanding will
be referred to as bar high demand.

fNIRS Signal: Bar High Demand v. Pie High Demand
Investigating the differences in these two groups, we found
that the levels of deoxygenated hemoglobin exhibited by par-
ticipants who found bar graphs more mentally demanding
were the reverse of those participants who found pie charts
more mentally demanding. Figure 4 shows that in the bar
high demand group, we observed a decrease in deoxygenated
hemoglobin in both the left and right hemisphere during tasks
completed on bar graphs. In comparison, these same interac-
tions induced a slight increase in deoxygenated hemoglobin
in the pie high demand group.



Figure 5. The mean change in deoxygenated hemoglobin for each graph
shows that the visual design that partipants found to be more difficult
resulted in larger decreases in deoxygened hemoglobin.

Thus, we performed an ANOVA on the mean change in de-
oxygenated hemoglobin using a 2 (task) x 2 (group) split plot
design. The ANOVA revealed a significant difference be-
tween groups (F (1, 12) = 9.95, p < .01), as well as a signif-
icant interaction between groups (pie high demand and bar
high demand) and task (F (1, 12) = 16.49, p < .01). This
finding shows that participants in the pie high demand group
and the bar high demand group showed significantly differ-
ent patterns of deoxygenated hemoglobin while performing
the two tasks (Figure 5). Note that while the mean provides a
suitable metric for analysis, it can miss some trends in time-
series data. Specifically, Figure 5 suggests that both groups
recorded similar changes in deoxygenated hemoglobin while
interacting with bar graphs. However, Figure 4 shows that the
fNIRS signal was trending in opposite directions.

Performance: Bar High Demand v. Pie High Demand
In light of these group differences, we performed another
analysis on response times by running a similar ANOVA
on mean response time using a 2 (task) x 2 (group) split
plot design. After ensuring that the data fit a normal distri-
bution, we found no significant interaction between groups
and tasks (F (1, 12) = 2.425, p = .145). Similarly, an
ANOVA on log error as shown in equation (2) found no sig-
nificant difference in the interaction between group and task
(F (1, 12) = .51, p = .4907). We display a box-plot of log
error and response time for each of the two groups in Figure 6.

These results suggest that although there were significant dif-
ferences in brain activity between bar graphs and pie charts,
there was no observable differences in performance, either
categorically (bar graphs v. pie charts) or between group (bar
high demand v. pie high demand). This is a very different
result from those observed by Cleveland and McGill [6], in
which position judgments (bar graphs) were found to sig-
nificantly outperform angle judgments (pie charts). How-
ever, given the complex nature of the task, it is not surprising
that performance corresponds more closely to findings from
Spence and Lewandowsky that pie charts can perform as well,
or better than bar graphs in difficult tasks [32, 34].

Figure 6. Despite a clear separation in brain activity between the bar
high demand group and the pie high demand group, we observe very
little difference in response time and error. The whiskers represent
the max/min values, excluding outliers. Outliers are assigned by being
more/less than 1.5 times the value of the upper/lower quartiles.

DISCUSSION OF BAR GRAPHS AND PIE CHARTS
Our results show that changes in deoxygenated hemoglobin
during the use of bar graphs in a complex task are statis-
tically different from those observed during the use of pie
charts. However, this distinction was not categorical. In-
stead, brain activity depended on the individual and correlated
with reports of mental demand in a NASA-TLX question-
naire. These differences between participants may call into
question the conventional wisdom to always use bar graphs
instead of pie charts.

Differences in Perceived Mental Demand
In the background, we outlined studies that used performance
metrics of speed and accuracy to compare the use of bar
graphs and pie charts. We expected that self-reports of men-
tal demand would roughly resemble performance trends, and
following previous research, one visual form would be cate-
gorically favored over the other. However, we discovered that
14 out of 16 participants found one chart to be more men-
tally demanding than the other. Therefore, we reject our
initial hypothesis that brain signals would indicate that
bar graphs are easier to use for most people.

Subjectively, there was no indication that either bar graphs or
pie charts were superior across all participants on this partic-
ular task. 7 participants reported pie charts to be more men-
tally demanding and 7 participants reported bar graphs to be
more mentally demanding (the final 2 reported no noticeable
difference). Although we did not investigate the underlying
cause of this observation, we suspect that this is due to either
differences in cognitive traits (e.g. spatial ability), strategies
employed to complete the task, or previous experience with
bar graphs and pie charts.

Survey Responses and fNIRS Signals
While surveys can be found to be affected by bias or an
inability to accurately externalize cognitive state, we found



a surprising correlation between fNIRS readings and men-
tal demand reports on NASA-TLX. The graph that partici-
pants reported to be more mentally demanding recorded
decreased levels of deoxygenated hemoglobin, validating
the use of fNIRS to procure meaningful information about
cognitive state. Additionally, the results indicate that partic-
ipants were generally well-tuned to their own cognitive pro-
cesses and accurately externalized their cognitive load. We
discuss the implications of this observation in the following
section.

Indistinguishable Performance Between Graphs
A comparison of NASA-TLX responses and speed and ac-
curacy demonstrates a dissociation between performance and
cognitive state during the use of bar graphs and pie charts.
Performance measures on both graphs were statistically in-
distinguishable from each other, regardless of whether par-
ticipants found one graph to be more mentally demanding.
However both questionnaire responses and fNIRS readings
showed that the two designs influenced brain activity differ-
ently.

Given these results, it is possible that participants were ex-
erting different amounts of mental effort on a given graph to
achieve the same levels of performance. Furthermore, this ob-
servation suggests that evaluating performance metrics with-
out considering cognitive state might have led to different
conclusions about the efficacy of bar graphs and pie charts in
this experiment. In the next section, we investigate whether
the fNIRS signals we observed reflect levels of mental de-
mand.

N-BACK TASK: DETECTING MENTAL WORKLOAD
During the course of this paper, we have been intentionally
ambiguous about assigning a specific cognitive state to our
fNIRS readings. The brain is extremely complex and it is
dangerous to make unsubstantiated claims about functional-
ity. However, for fNIRS to be a useful tool in the evaluation
of visual design, there also needs to be an understanding of
what cognitive processes fNIRS signals may represent. In
our experiment, we have reason to believe that the signals we
recorded correlate with levels of mental demand. We share
three legs of evidence that support this claim:

1. fMRI studies have suggested that decreases in deoxy-
genated hemoglobin are indicative of increased brain ac-
tivity [9]. Active regions of the brain require more oxy-
gen to function. Thus, as levels of oxygenated hemoglobin
increase to meet these demands, levels of deoxygenated
hemoglobin decrease.

2. Self-reports of mental demand from the NASA-TLX re-
sults during the bar-graph and pie chart task correlated with
levels of deoxygenated hemoglobin. Graphs that were re-
ported to require more mental effort were accompanied by
lower levels of deoxygenated hemoglobin.

3. We ran each participant on a well-characterized working
memory task from the psychology literature - the visuospa-
tial n-back test - and found that brain activity in the more
mentally demanding graph mirrored activity in the more

Figure 7. In the visuospatial n-back task, participants view a series
of slides and respond whether the current pattern matches the pattern
from n slides ago. We show positive answers for both the 1-back and
3-back conditions.

demanding n-back condition. We discuss the details of this
experiment in the next section.

Methods
In the n-back task, participants were shown a series of slides,
each with a distinct visual pattern, and asked whether the cur-
rent slide matched the pattern from either 1 slide previously
(1-back) or 3 slides previous to the current slide (3-back).
Thus, the 3-back task strains the participant’s visuospatial
working memory by forcing him or her to constantly remem-
ber (and update) 3 images at once. By comparison, the 1-back
task is relatively simple, requiring participants to remember
only visual pattern from the previous slide.

Figure 7 shows an example of 6 slides from the n-back test.
For each slide, the visual pattern remained on the screen
for 300ms followed by a blank response screen for 1550ms
in which participants answered ‘yes’ or ‘no’ using a single
keystroke. Participants were given 8 trials of each condition
with each trial consisting of 22 slides. Each trial lasted for
40.7 seconds and trials were separated by 12-second rest pe-
riods. This experimental timing mirrors the timing in the bar
graphs/pie charts task, enabling us to compare equal slices of
time for the fNIRS data.

Results
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Figure 8. The mean fNIRS signal across all 16 participants in the Base-
line Task. We see a clear separation between the 1-back and 3-back
conditions participants. The more demanding 3-back condition mirrors
signals from the graph design that participants believed was more men-
tally demanding.

Looking at the results, Figure 8 shows that there is a clear
distinction between 1-back (blue) and 3-back (black) trials.
These results are expected and resemble previous studies



of the n-back task [21]. Additionally, the 3-back task in-
duced lower levels of deoxygenated hemoglobin, agreeing
with other observations of deoxygenated hemoglobin from
the fMRI literature.
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Figure 9. An example of comparing the n-back signal with those
recorded in the bar graph v. pie chart experiment. The signal recorded
during the more demanding 3-back resembles the signal recorded dur-
ing bar graphs for the bar high demand group - participants who found
bar graphs to be more mentally demanding than pie charts.

When placed side-by-side with the fNIRS readings from out
bar graph/pie chart task, we notice that signals from the more
mentally demanding 3-back resemble those from the graph
that participants identified as requiring more mental effort
(Figure 9). Similarly, the signal recorded from the less-
demanding 1-back task resembles those observed in the graph
that participants identified as requiring less mental effort (Fig-
ure 9).

Given these three legs of evidence - previous observations
noted in fMRI studies, correlations with survey data, and cor-
relations with signals observed in the n-back task - we feel
confident that the fNIRS signals observed during use with
bar graphs and pie charts correlate with mental demand in
the brain. Furthermore, these results suggest that fNIRS can
be used to monitor mental demand in other visual interfaces.

FNIRS: CONSIDERATIONS FOR EVALUATION
We have shown that we can successfully differentiate fNIRS
signals during the interaction of bar graphs and pie charts in a
complex task and that these signals likely indicate workload
in the brain. In this section, we synthesize our results, previ-
ous literature, and an auxiliary study to explore when fNIRS
is an appropriate tool for the evaluation of visual design.

Are Surveys Good Enough?
Cognitive state is often overlooked in evaluation, partially be-
cause it is difficult or cumbersome to quantify. We found
that a simple survey agreed with fNIRS readings and accu-
rately captured the participant’s mental workload. This is
good news for simple evaluations of mental demand. Ques-
tionnaires do not require an unreasonable time investment,
and the strength of our observations were based on a single
dimension in the NASA-TLX questionnaire. If more objec-
tive measures are not available, questionnaires can provide
insight into a user’s cognitive state.

Nonetheless, questionnaires can be problematic as they de-
pend on the assumption that people can sense and externalize
their subjective feelings without being biased by external in-
fluences [8, 22]. In comparison, brain sensing provides an
objective snapshot of cognitive state and short-cuts the rating
process by directly measuring the brain during interaction.
As opposed to post-hoc questionnaires, neurophysiological
measures require no additional effort or time from the par-
ticipant. Furthermore, physiological measures can be used in
more complex or time-consuming tasks for fine-grained ob-
servations of cognitive processes. Instead of a single work-
load metric for the entirety of a task, physiological measures
can provide time-sensitive evaluations, potentially identifying
periods of mental demand. We recommend that visualization
researchers carefully weigh the nature of their comparison to
select an appropriate technique.

Lending Insight to Complex, Analytical Tasks
Given the results of our study, we suggest that fNIRS may
be well-suited for the analysis of complex interactions that
are common in visual analytic systems. In this section, we
highlight three other factors that point to fNIRS being well-
suited for analytical tasks:

• The extended timeline of complex tasks mitigates the slow
temporal resolution of fNIRS, which occurs because of the
delayed (5-7 seconds) physiological response to brain ac-
tivity.

• The PFC - the region of the brain that fNIRS most easily
measures - has been posited to “integrate the outcomes of
two or more separate cognitive operations in the pursuit of
a higher behavioural goal” [25]. These higher-level cogni-
tive functions typically drive analytical thought and include
(but are not limited to) selection, comparison, the organi-
zation of material before encoding, task switching, holding
spatial information ‘online’, and introspective evaluation
of internal mental states [25, 27].

• The successful examples of applying fNIRS measures to
interface evaluation have traditionally leveraged mentally
demanding scenarios such as multi-tasking the navigation
of multiple robots [29], increasing the difficulty of a video
game [11], or reversing the steering mechanism in a driving
task [15].

Given these factors, we believe that fNIRS will provide the
most insight to visual interfaces that require complex, analyt-
ical thought. However, fNIRS is not without its limitations;
as we demonstrate in the next section, short, low-level tasks
are difficult to detect using fNIRS.

Perceptually-Driven Tasks are Difficult to Monitor
To explore the limits of using fNIRS to evaluate visual inter-
faces, we constructed an experiment that is closer to Cleve-
land & McGill’s original comparison of position v. an-
gle, which is based on more perceptually-driven interac-
tions. Whereas trials in our previous experiment required par-
ticipants to make percentage comparisons in graphs across
slides, a trial in this modification consisted of 4 percent-
age comparisons (3.75 seconds per comparison) on the same



Figure 10. Participants sequentially compared elements of a graph to
the largest element of the graph.

graph and participants interacted with 12 trials of bar graphs
and 12 trials of pie charts. Thus, for each trial, four small
pieces on a graph were sequentially compared to the largest
piece in the graph (Figure 10).

To compare the changes in deoxygenated hemoglobin with
our previous study, we ran an additional 8 participants and
plotted the fNIRS signal using the axis of the same scale as
the complex task. Looking at Figure 11, we can see that both
pie charts and bar graphs caused very little activation in the
PFC, with little to no differentiation between signals.

These results are not surprising. Quick visual and perceptual
tasks are not likely to be observed by fNIRS. Tasks that rely
heavily on preattentive processing use very little of the pro-
cessing power of the PFC. Additionally, it takes a couple of
seconds to observe the hemodynamic response resulting from
brain activity, and 5-7 seconds in total for the oxygen levels
to peak in the brain. This means that we are unlikely to ob-
serve quick and subtle interactions with a visualization. We
therefore recommend that fNIRS will lend the most insight
during more complex analytical interactions.

FINDINGS AND FUTURE WORK
We have demonstrated that fNIRS is a viable technology for
investigating the impact of visual design on a person’s cogni-
tion processes. Using the classical comparison of bar graphs
and pie charts, we found that decreasing levels of deoxy-
genated hemoblogin correlated with the visual form that par-
ticipants found to be more mentally demanding. We suggest
that these changes in deoxygenated hemoglobin, detected in
the PFC, indicate the amount of mental effort associated with
the visual design. As we demonstrated in our study, these
differences in workload are not necessarily reflected in tradi-
tional performance metrics.

Exploring the use of fNIRS in visualization research, we sug-
gested that fNIRS is well suited for the evaluation of visual
interfaces that support analytical reasoning tasks. This advan-
tage should be particularly appealing for interface designers,
as the complexity of visual analytic systems often make it dif-
ficult to apply traditional performance metrics. Additionally,
the resistance of fNIRS sensors to movement artifacts allows
users to interact naturally with an interface, resulting in more
ecologically sound evaluations.

Lowering the barrier to monitor cognitive state increases the
opportunity to develop adaptive applications that specially
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Figure 11. The mean fNIRS signal across all 8 participants in a simple
bar graphs and pie charts task. The lack of activation shows that fNIRS
may be less suited for simple, perceptual comparisons.

calibrate the display of information to the individual. Re-
cently, Solovey et. al [29] used fNIRS to determine when
the user should be interrupted with new information and built
a system that adapted the level of automated assistance in a
virtual robot navigation task. While recent work in visual-
ization has begun to pay careful consideration to the impact
of a user’s personality and cognitive traits, using tools like
fNIRS, we hope that visual interfaces can be designed to also
be attentive to the user’s current cognitive state.

The strengths of fNIRS are appealing, however, there are also
limitations. While we identified periods of high or low work-
load, more specific mappings of fNIRS signals to cognitive
states are needed to promote fine-grained evaluations of vi-
sual interfaces. Additionally, we found that fNIRS is less
suited for quick visual tasks that are driven by the user’s per-
ceptual system. Despite these drawbacks, fNIRS provides
a suite of benefits that are distinctive and complimentary to
those offered by other physiological sensors. With the de-
creasing cost of brain sensing technology and its increasing
use in HCI, we believe that the door has finally opened to di-
rectly explore the impact of visual design on cognitive state.

ACKNOWLEDGMENTS
We thank Dan Afergan, Andrew Jenkins, Francine Lalooses,
and Garth Griffin who are students in the HCI group at Tufts;
Sergio Fantini and Angelo Sassaroli from the Biomedical
Engineering Department at Tufts; Jordan Crouser from the
VALT group at Tufts; and Erin Solovey from the Humans
and Automation Lab at MIT. We thank the National Sci-
ence Foundation (grant nos. IIS-0713506, IIS-1065154, IIS-
1218170) for support of this research.

REFERENCES
1. Anderson, E., Potter, K., Matzen, L., Shepherd, J., Preston, G.,

and Silva, C. A User Study of Visualization Effectiveness
Using EEG and Cognitive Load. In EuroVis 2011, vol. 30,
Wiley Online Library (2011), 791–800.

2. Ayaz, H., Shewokis, P. a., Bunce, S., Izzetoglu, K., Willems,
B., and Onaral, B. Optical brain monitoring for operator
training and mental workload assessment. NeuroImage 59, 1
(2012), 36–47.



3. Bertini, E., Perer, A., Plaisant, C., and Santucci, G. BEyond
time and errors: novel evaLuation methods for Information
Visualization. BELIV (2010), 4441–4444.

4. Causse, M., and Hurter, C. The physiological users response as
a clue to assess visual variables effectiveness. Human Centered
Design (2009), 167–176.

5. Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden,
K., Li, C., Murray, T., Ovetsky, Y., Pidikiti, D., and Thomas, R.
A novel method for fast imaging of brain function,
non-invasively, with light. Optics express 2, 10 (1998), 411–23.

6. Cleveland, W. S., and McGill, R. Graphical Perception:
Theory, Experimentation, and Application to the Development
of Graphical Methods. Journal of the American Statistical
Association 79, 387 (1984), 531–554.

7. De Waard, D. The measurement of drivers’ mental workload.
PhD thesis, 1996.

8. Dell, N., Vaidyanathan, V., Medhi, I., Cutrell, E., and Thies, W.
Yours is Better! Participant Response Bias in HCI. In ACM
CHI 2012 (2012), 1321–1330.

9. D’Esposito, M., Zarahn, E., and Aguirre, G. Event-Related
Functional MRI: Implications for Cognitive Psychology.
Psychological bulletin 125, 1 (1999), 155–164.

10. Fairclough, S. H. Fundamentals of Physiological Computing.
Interacting with Computers 21 (2009), 133–145.

11. Girouard, A., Solovey, E., Hirshfield, L., Chauncey, K.,
Sassaroli, A., Fantini, S., and Jacob, R. J. Distinguishing
difficulty levels with non-invasive brain activity measurements.
Human-Computer Interaction INTERACT 2009 (2009),
440–452.

12. Girouard, A., Solovey, E. T., Hirshfield, L. M., Peck, E. M.,
Chauncey, K., Sassaroli, A., Fantini, S., and Jacob, R. J. From
Brain Signals to Adaptive Interfaces : using fNIRS in HCI.
2010, 221–237.

13. Hart, S. G., and Staveland, L. E. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical
research. Human mental workload (1988), 139–183.

14. Heer, J., and Bostock, M. Crowdsourcing graphical perception:
using mechanical turk to assess visualization design. ACM CHI
2010 (2010), 203–212.

15. Hirshfield, L. M., Gulotta, R., Hirshfield, S., Hincks, S.,
Russel, M., Ward, R., Williams, T., and Jacob, R. J. K. This is
Your Brain on Interfaces : Enhancing Usability Testing with
Functional Near-Infrared Spectroscopy. In ACM CHI 2011
(2011), 373–382.

16. Hirshfield, L. M., Solovey, E. T., Girouard, A., Kebinger, J.,
Jacob, R. J. K., Sassaroli, A., and Fantini, S. Brain
Measurement for Usability Testing and Adaptive Interfaces:
An Example of Uncovering Syntactic Workload with
Functional Near Infrared Spectroscopy. In ACM CHI 2009
(2009), 2185–2194.

17. Huang, W., Eades, P., and Hong, S.-H. Measuring effectiveness
of graph visualizations: A cognitive load perspective. IEEE
Transactions on Information Visualization 8, 3 (2009),
139–152.

18. Hullman, J., Adar, E., and Shah, P. Benefitting InfoVis with
visual difficulties. IEEE Transactions on Visualization and
Computer Graphics 17, 12 (2011), 2213–22.

19. Lloyd-Fox, S., Blasi, A., and Elwell, C. E. Illuminating the
developing brain: the past, present and future of functional
near infrared spectroscopy. Neuroscience and biobehavioral
reviews 34, 3 (Mar. 2010), 269–84.

20. Moroney, W. F., Biers, D. W., Eggemeier, F. T., and Mitchell,
J. A. A Comparison of Two Scoring Procedures with the
NASA Task Load Index in a Simulated Flight Task. National
Aerospace and Electronics (1992), 734–740.

21. Owen, A. M., McMillan, K. M., Laird, A. R., and Bullmore, E.
N-back working memory paradigm: a meta-analysis of
normative functional neuroimaging studies. Human Brain
Mapping 25, 1 (2005), 46–59.

22. Paas, F., Tuovinen, J. E., Tabbers, H., and Van Gerven, P.
W. M. Cognitive Load Measurement as a Means to Advance
Cognitive Load Theory. Educational Technology 38, 1 (2003),
63–71.

23. Paas, F. G., and Van Merriënboer, J. J. The efficiency of
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