
Nifty Assignments

Nick Parlante
Julie Zelenski

 Stanford University
 nick.parlante@cs.stanford.edu

zelenski@cs.stanford.edu

Evan M. Peck
 Bucknell University

 evan.peck@bucknell.edu

Kevin Wayne
 Princeton University

wayne@cs.princeton.edu

John DeNero
Christopher Allsman

Tiffany Perumpail
Rahul Arya
Kavi Gupta

Catherine Cang
Paul Bitutsky

Ryan Moughan
 UC Berkeley

{denero,callsman,tperumpail,rahularya,
kavi,catherinecang,pbitutsky,rmoughan}

@berkeley.edu

David J. Malan
Brian Yu

 Harvard University
 malan@harvard.edu
brian@cs.harvard.edu

Carl Albing
 Naval Postgraduate School

carl.albing@nps.edu

Keith Schwarz
 Stanford University
 htiek@cs.stanford.edu

ABSTRACT
The Nifty Assignments special session is about promoting and
sharing the ideas and ready-to-use materials of successful
assignments.

Each presenter will introduce their assignment, give a quick demo,
and describe its niche in the curriculum and its strengths and
weaknesses. The presentations (and the descriptions below)
merely introduce the assignment. A key part of Nifty Assignments
is the mundane but vital role of distributing the materials –
handouts, data files, starter code, rubrics, autograders – that make
each assignment ready to adopt. Each assignment presented has
complete materials freely available on the Nifty Assignments
home page nifty.stanford.edu.

If you have an assignment that works well and would be of
interest to the CSE community, please consider applying to
present at Nifty Assignments.

CCS CONCEPTS
• Applied computing → Digital libraries and archives

KEYWORDS
Education; assignments; homeworks; examples; repository; library;
nifty; pedagogy

Housing Algorithms: Developers as Decision
Makers (CS0/CS1) — Evan M. Peck
How can we train students to carefully reflect on their social
responsibility as programmers? In this CS1 assignment, we pair

sociotechnical issues with the technical content. While practicing
conditional statements, students design an algorithm to assign
housing priority on campus. Their program asks a series of
questions, assigns points for answers which sum to a total priority
at the end of the questionnaire.

Each student group uses a human-centered design process to
interview their classmates, and then decides on the important
questions that should drive housing priority. Students determine
test cases and write code that reinforces their understanding of
conditional statements. The output is simple and the project can be
completed in just a few hours, but the challenges model those
faced by real-world algorithms.

Students observe a programming context in which there are no
right answers – only complex tradeoffs that rarely have neutral
outcomes. They reflect on which people their algorithm benefits
and which are likely to be disadvantaged. The assignment touches
on algorithmic transparency and fairness early in their CS career.
Most importantly, we believe it signals to students that hard
problems in CS aren’t always hard for purely technical reasons,
but for the contexts in which they are embedded.

Bar Chart Racer (CS1) — Kevin Wayne
In Bar Chart Racer, student write a program to produce animated
bar charts. Animated bar charts are a surprisingly simple, yet
powerful, way to tell a story about categorical data over time.

For example, to visualize the 10 most populous cities in the world
from 1500 to 2019, students successively draw 520 individual bar
charts (one per year of data), with a short pause between
drawings. Each bar chart contains
bars for the 10 most populous cities
in that year, sorted in order of
population, and colored according to
world region.

We provide a simple library (in
either Java or Python) to draw static

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE '20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6793-6/20/03.
https://doi.org/10.1145/3328778.3372574

Nifty Assignments SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1270

https://doi.org/10.1145/3328778.3372574

bar charts. We also supply compelling data files, ranging from
geography and business to sports and entertainment.

The assignment combines graphics and real-world data to create
captivating visualizations. It is easy to explain, authentic, and
appealing to a diverse range of students. It gives students practice
with several core CS topics including sorting an array/list, defining
a total order for a user-defined type, reading a text file one line at a
time, and computer animation.

Typing speed test (CS1) — John DeNero,
Christopher Allsman, Tiffany Perumpail,
Rahul Arya, Kavi Gupta, Catherine Cang,
Paul Bitutsky, and Ryan Moughan
Students create a web app similar to TypeRacer.com where players
compete to type a quotation as fast as possible. They build a
simple Python web server, starting with computing typing speed
and accuracy measurements, then adding nifty features like
autocorrect and multiplayer support.

This assignment covers a number of CS1 topics including using
collections (lists, strings, dictionaries), list comprehensions, higher-
order functions, and iteration. Computing string edit distance for
the autocorrect feature is a motivating application of recursion.
While the project is designed for a Python-based course, the open-
source React-based web GUI provided to the students is easy to
read and extend. This assignment lends itself nicely to extensions
involving faster or more accurate autocomplete, as well as post-
game analysis of a typing race.

This project was developed for week 5 of a fast-paced CS1 course
in which most students have prior programming experience. An
integrated autograder and full test suite guides students through
the process and allows them to verify the correctness of their
implementation as they work.

DNA (CS1) — David J. Malan and Brian Yu
This assignment is a whodunit, a CSI-style problem for which
students write a program to search a DNA database to find a
match to a "suspect". This application of computer science to
biology asks students to explore DNA profiling and how forensic
investigators can identify to whom a given sequence of DNA
belongs. Students learn about Short Tandem Repeats (STRs), short
sequences of DNA that repeat consecutively at specific locations
within a person's DNA. The number of times each STR repeats can
be used to identify someone based on their DNA.

Students compute the STRs from a target DNA sequence and
compare to the database of STR counts to identify the person to
whom the DNA (most likely) belongs. We use this assignment to
introduce students to Python and to give students practice with
loops, string manipulation, and file I/O.

Color My World (CS1/CS2) — Carl Albing
Students solve the mystery of the unknown image while learning
about pseudo-coloring and color maps to convert raw data into
beautiful images.

Computing can produce lots of numbers fast; pictures can help us
understand those numbers. Often those pictures don't match an
actual physical visibility; (e.g., what color are microwaves from
space?) so we can be creative, choosing and assigning colors to
bring out detail in those images based on our data.

In this assignment, students are given a data file of raw numbers
and convert those numbers into a compelling visual image.
Application of a color map produces the pixel values of their
image. Variations of the assignment make it suitable for more
advanced students. While early programming courses can focus on
looping through the pixels, more advanced classes in scientific
programming, high performance computing, computer graphics,
or data science, can be given less starter code and require more
analysis of the raw data.

This assignment challenges students with an open-ended creative
aspect as well as its tangible result— a pile of numbers turned into
an amazing image.

Recursion to the Rescue! (CS2) — Keith Schwarz
This assignment is a trio of recursion exercises that get students
solving problems with real-world stakes. Using recursive
backtracking and memoization, students construct hospital
schedules, determine where to stockpile supplies for disasters, and
probe the extremes of the Electoral College. In doing so, students
explore classic NP-hard problems and see how the techniques
they're learning in the classroom translate into practice.

The three pieces can used individually or mixed and matched into
a single assignment.

• Doctors Without Orders: Students write a function to schedule
patient appointments while respecting restrictions on the
amount of time each doctor has available.

• Disaster Planning: Students determine where to stockpile
emergency supplies so that each city either has supplies or is
adjacent to one that does. The sample data files model the road
and rail networks of various countries and regions.

• Winning the Presidency: Students write a function that
determines the minimum number of popular votes that would
have been needed to be elected President of the United States in
each year since 1828. The results are surprising!

Many students find these problems rewarding because of their
inherent interest in the topics explored. For students who go
onward to take courses in algorithms or complexity, this
assignment has the additional benefit of introducing and
motivating three classic NP-hard problems: bin packing, minimum
dominating set, and the knapsack problem.

Nifty Assignments SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1271

http://typeracer.com/

